Math, asked by ashuguptafzd16, 6 hours ago

equal to 3 x squared theta minus 1 Y equal to 10 square theta minus 2 then value of x minus 3 Y is​
very famous question

Answers

Answered by pranyakriti60
2

Answer:

The value of expression is x-3y=8x−3y=8

Step-by-step explanation:

Given : x=3\sec^2\theta-1x=3sec

2

θ−1 and y=\tan^2\theta-2y=tan

2

θ−2

To find : The value of x-3yx−3y

Solution :

Write the expression x-3yx−3y

Substitute, the values of x and y given

i.e. x-3y =3\sec^2\theta-1-3(\tan^2\theta-2)x−3y=3sec

2

θ−1−3(tan

2

θ−2)

Solving,

x-3y =3\sec^2\theta-1-3\tan^2\theta+6x−3y=3sec

2

θ−1−3tan

2

θ+6

x-3y=3(sec^2\theta-\tan^2\theta)+5x−3y=3(sec

2

θ−tan

2

θ)+5

Applying trigonometric identity,

sec^2\theta-\tan^2\theta=1sec

2

θ−tan

2

θ=1

We get,

x-3y=3(sec^2\theta-\tan^2\theta)+5x−3y=3(sec

2

θ−tan

2

θ)+5

x-3y=3(1)+5x−3y=3(1)+5

x-3y=8x−3y=8

Therefore, The value of expression is x-3y=8x−3y=8

Answered by 44PurpleOcean
3

Answer:

(3x) ^{2}  + (4y) ^{2}  = (3x - 4y)^{2}  + 2(3x)(4y) \\ 9x ^{2}  + 16y ^{2}  = (3x - 4y^{2}  + 24xy \\ (10) ^{2}  + 24 \times ( - 1) \\ 100 - 24 \\ 76

Step-by-step explanation:

hope it helps :-)

Similar questions