Math, asked by drrspandana33231, 11 months ago

Equals to 3 + 2 root 2 then find the value of a square + 1 upon a square

Answers

Answered by DaIncredible
1

Answer:

34.

Step-by-step explanation:

Given,

a = 3 + 2√2

 \frac{1}{a}  =  \frac{1}{3 + 2 \sqrt{2} }  \\

Rationalizing the denominator we get:

 \frac{1}{a}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \frac{1}{a}  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2} )}^{2} }  \\  \\  \frac{1}{a}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \bf \frac{1}{a}  = 3 - 2 \sqrt{2}

Now,

a +  \frac{1}{a}  = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\ a +  \frac{1}{a}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\ a +  \frac{1}{a}  = 6

Squaring both the sides we get:

 {(a +  \frac{1}{a} )}^{2}  =  {(6)}^{2}  \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 \times a \times  \frac{1}{a}  = 36 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 36 \\  \\  {a}^{2}  +   \frac{1}{ {a}^{2} }  = 36 - 2 \\  \\  \bf {a}^{2}  +  \frac{1}{ {a}^{2} }  = 34

Answered by Anonymous
11

a = 3 + 2√2

______ [GIVEN]

• We have to find the value of a² + \dfrac{1}{ {a}^{2} }

________________________________

Solution:

• a = 3 + 2√2

\dfrac{1}{a} = \dfrac{1}{3 \:  +  \: 2 \sqrt{2} }

» Rationalize

=> \dfrac{1}{3 \:  +  \: 2 \sqrt{2} } × \dfrac{3 \:  -  \: 2 \sqrt{2} }{3 \:  -  \:  2\sqrt{2} }

(a + b) (a - b) = a² - b²

=> \dfrac{3 \:  -  \: 2 \sqrt{2} }{ {3}^{2}  \:  -  \: 4 \:  \times  \: 2 }

=> \dfrac{3\:-\:2\sqrt{2}}{9\:-\:8}

=> 3 - 2√2

_______________________________

Now..

=> (a + \dfrac{1}{a}) = 3 + 2√2 + 3 - 2√2

=> (a + \dfrac{1}{a}) = 6

• Squaring on both sides.

=> ( {a \:  +  \:  \dfrac{1}{a} )}^{2} = (6)²

(a + b)² = a² + b² + 2ab

=> a² + \dfrac{1}{ {a}^{2} } + 2a × \dfrac{1}{a} = 36

=> a² + \dfrac{1}{ {a}^{2} } + 2 = 36

=> a² + \dfrac{1}{ {a}^{2} } = 36 - 2

_____________________________

a² + \dfrac{1}{ {a}^{2} } = 34

___________ [ANSWER]

Similar questions