Math, asked by kunchasupriya181, 11 months ago

Equation if hyperbola with vertices (-3,0)and(3,0) and latus rectum 4 is

Answers

Answered by vimal2602p1xosl
2

below................ ; )

Attachments:
Answered by sanjeevk28012
0

The equation of hyperbola with vertex and latus rectum is    \dfrac{x^{2} }{9}  -  \dfrac{y^{2} }{12 }  = 1

Step-by-step explanation:

Given as :

The vertices of hyperbola = ( - 3 , 0 ) ( 3 , 0 )

Latus rectum = 4

According to question

The standard equation of hyperbola \dfrac{x^{2} }{a^{2} }  -  \dfrac{y^{2} }{b^{2} }  = 1

vertex = ( \pm a , 0 )  = ( \pm 3 , 0 )  

latus rectum = \dfrac{b^{2} }{a} = 4

∵     a = \pm 3

∴    a² = 9

Thus , b² = 4 a

Or,     b² = 4 × 3 = 12

∴     b² = 12

So, The equation of hyperbola = \dfrac{x^{2} }{9}  -  \dfrac{y^{2} }{12 }  = 1

Hence, The equation of hyperbola with vertex and latus rectum is             \dfrac{x^{2} }{9}  -  \dfrac{y^{2} }{12 }  = 1    Answer

Similar questions