Math, asked by Kunatyu58, 1 year ago

Equation of a line is x - y √3 + 6 =0, convert this equation to a perpendicular form.

Answers

Answered by Anonymous
0

Answer:


Step-by-step explanation:

Where is the value of x and y without that eq would not from

Answered by Swarnimkumar22
8
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}


\bold{\underline{Question-}}


Equation of a line is x - y √3 + 6 =0, convert this equation to a perpendicular form.


\bold{\underline{Answer-}}


Given equation is
 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x - y \sqrt{3}  + 6 = 0

x - y \sqrt{3}  =  - 6

dividing \: the \: both \: sides \: with \:  \\  \sqrt{( {1}^{2}) + ( -  \sqrt{3)} {}^{2}   } \\  \\   =  \sqrt{1 + 3}   \\  \\  =  \sqrt{4}  = 2


 =  >  \frac{1}{2} x -  \frac{ \sqrt{3} }{2} y =  -  \frac{6}{2}  \\  \\  -  \frac{1}{2} x +  \frac{ \sqrt{3} }{2} y = 3 \\  \\  \\  \\ x \: cos120 \:  + y \: sin \: 120 = 3
Similar questions