Math, asked by alpabenprajapati29, 4 months ago

Equation of a straight line
passing through (1, 2) and (2,5)
is​

Answers

Answered by REDPLANET
15

\underline{\boxed{\bold{ \bigstar \; Question \; \bigstar }}}  

➠ Equation of a straight line  passing through (1, 2) and (2,5)  is​ ?

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Important \; Information \; \bigstar }}}  

 \; \; \; \; \;

❏ A straight line a a open 2-D figure that is made up of infinitely many points or infinitely many points lies on one straight line.

 \; \; \; \; \;

❏ Slope of a line is the inclination of that line with coordinate x-axis.

 \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { \bold {:\leadsto Slope = \dfrac{\triangle y}{\triangle x} =\dfrac{y_2 - y_1}{x_2 - x_1} } }

 \; \; \; \; \;

❏ If 2 co-ordinates of points are given then we can write a unique equation of line that passes through that points.

 \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { \bold {:\leadsto y - y_1 =\dfrac{y_2 - y_1}{x_2 - x_1}\big[x-x_1 \big] } }

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Given \; \bigstar }}}  

 \; \; \; \; \;

➠ Point 1 : (1,2)

➠ Point 2 : (2,5)

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Answer \; \bigstar }}}  

Let's Start !

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

❖ First of all let's have a clear look on following values.

 \; \; \; \; \;

\boxed { :\longmapsto x_1 = 1 \ ,\ y_1 = 2 }\\\boxed {:\longmapsto x_2= 2\ ,\ y_2 = 5 }

 \; \; \; \; \;

❖ Now Let's substitute the given values in our equation .-.

 \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { \bold {:\leadsto y - y_1 =\dfrac{y_2 - y_1}{x_2 - x_1}\big[x-x_1 \big] } }

 \; \; \; \; \;

:\implies y - 2 =\dfrac{5-2}{2 - 1}\big[x-1 \big]

:\implies y - 2 =\dfrac{3}{1}\big(x-1 \big)

:\implies y - 2 = 3(x-1)

:\implies y - 2 = 3x-3

:\implies y = 3x-3 + 2

\boxed { \bold { \orange {:\implies y = 3x-1 } } }

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

\boxed{\boxed{\bold{\therefore Equation \; of \; line : y = 3x - 1}}}

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u .../

【Brainly Advisor】

Similar questions