Math, asked by rr3280953, 11 months ago

Equation of directrix of the parabola y^2=5x-4y-9

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x+\frac{1}{4}=0}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies  {y}^{2}  = 5x - 4y - 9 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Eqn  \: of  \:  directrix = ?

• According to given question :

 \tt:  \implies  {y}^{2}    = 5x - 4y  - 9 \\  \\ \tt:  \implies  {y}^{2}  + 4y = 5x - 9 \\  \\ \tt:  \implies  {y}^{2}  + 4y + 4 = 5x - 9 + 4 \\  \\ \tt:  \implies  {(y - 2)}^{2}  = 5x - 5 \\  \\ \tt:  \implies  {(y - 2)}^{2} = 5(x - 1) \\  \\\tt:  \implies  {(y - 2)}^{2}   = 4 \times  \frac{5}{4}(x - 1) \\  \\    \text{So, \: it \: is \: in \: the \: form \: of}\\  \\   \tt:  \implies Y^{2}  = 4aX \\  \\  \bold{Where : } \\  \tt \circ \: a =  \frac{5}{4}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Eqn \: of \: directrix  \to X =  - a \\  \\  \tt:  \implies Eqn \: of \: directrix \to x - 1 =   - \frac{5}{4}  \\  \\ \tt:  \implies Eqn \: of \: directrix \to x =   - \frac{5}{4}  + 1 \\  \\ \tt:  \implies Eqn \: of \: directrix \to x =  \frac{ - 1}{4}  \\  \\  \green{\tt:  \implies Eqn \: of \: directrix  \to x +  \frac{1}{4}  = 0}

Answered by Anonymous
4

Answer:

\large\boxed{\sf{x=-\dfrac{1}{4}}}

Step-by-step explanation:

Given an equation of parabola such that,

 {y}^{2}  = 5x - 4y - 9

To find the equation of directrix.

We know that, general form of a parabola is:

  • {Y}^{2}=4AX

Therefore, we need to convert the given eqn in this form.

Thus, further solving, we get,

 =  >  {y}^{2}  + 4y  = 5x  - 9\\  \\  =  >  {y}^{2}  + 4y + 4 = 5x - 9 + 4 \\  \\  =  >  {(y)}^{2}  + 2(y)(2) +  {(2)}^{2}  = 5x - 5 \\  \\  =  >  {(y + 2)}^{2}  = 5(x - 1) \\  \\  =  >  {(y + 2)}^{2}  = 4 \times 5(x - 1) \times   \dfrac{1}{4}  \\  \\  =  >  {(y + 2)}^{2}  = 4  ( \dfrac{5}{4}) (x - 1)

On comparing the equations, we get,

  • Y = (y + 2)
  • A = 5/4
  • X = (x - 1)

Now, we know that,

General equation for directrix is :

  • X = -A

Therefore, substituting the values, we get,

 =  > x - 1 =  -  \dfrac{5}{4}  \\  \\  =  > 4(x - 1) =  - 5 \\  \\  =  > 4x - 4 =  - 5 \\  \\  =  > 4x - 4 + 5 = 0 \\  \\  =  > 4x + 1 = 0 \\  \\  =  > 4x =  - 1 \\  \\  =  > x =  -  \dfrac{1}{4}

Hence, required eqn of directrix is x = - ¼

Similar questions