Equation of tangent for a point at hyperbola
Answers
Answered by
1
down voteaccepted(1a)Let y=mx+cy=mx+c
be a tangent of x2a2−y2b2=1x2a2−y2b2=1
Let (h,k)(h,k)
be the point of intersection.So, k=mh+c,b2h2−a2k2=a2b2⟹b2h2−a2(mh+c)2=a2b2k=mh+c,b2h2−a2k2=a2b2⟹b2h2−a2(mh+c)2=a2b2
or,h2(b2−a2m2)−2a2mch−a2b2−a2c2=0h2(b2−a2m2)−2a2mch−a2b2−a2c2=0
This is a quadratic equation in h,h,
for tangency, the roots need to be same, to make the two points of intersection coincident.⟹(−2a2mc)2=4⋅(b2−a2m2)(−a2b2−a2c2)⟹(−2a2mc)2=4⋅(b2−a2m2)(−a2b2−a2c2)
a2m2c2=a2m2b2+a2m2c2−b4−b2c2a2m2c2=a2m2b2+a2m2c2−b4−b2c2
cancelling out a2a2
as a≠0a≠0
0=a2m2b2−b4−b2c20=a2m2b2−b4−b2c2
0=a2m2−b2−c20=a2m2−b2−c2
cancelling out b2b2
as b≠0b≠0
⟹c2=a2m2−b2⟹c=±a2m2−b2−−−−−−−−√⟹c2=a2m2−b2⟹c=±a2m2−b2
(1b) Alternatively, we can take the central conic to be Ax2+By2=1Ax2+By2=1
Applying the same method we get, ABc2=A+m2BABc2=A+m2B
Here A=1a2,B=−1b2⟹c2=a2m2−b2A=1a2,B=−1b2⟹c2=a2m2−b2
(2a)Using calculus as André Nicolas has already done, we find the equation of the tangent to be xx1a2−yy1b2−1=0xx1a2−yy1b2−1=0
Comparing with mx−y+c=0mx−y+c=0
we get, x1ma2=y1b2=−1cx1ma2=y1b2=−1c
Now (x1,y1)(x1,y1)
lies on the given curve, so x21a2−y21b2=1x12a2−y12b2=1
, eliminating x1,y1x1,y1
, we shall get the desired result.(2b) we know , the parametric equation of the given curve is x=asect,y=btantx=asect,y=btant
So, the equation of the tangent becomes xsecta−ytantb−1=0xsecta−ytantb−1=0
Comparing with mx−y+c=0mx−y+c=0
we get, sectma=tantb=−1csectma=tantb=−1c
So, sect=−mac,tant=−bcsect=−mac,tant=−bc
Now use eliminate tt
.
Similar questions