equation of the circle having center (a,a) and point (h,k)
Answers
Answer:
x²+y²-2a(x+y)+2a(h+k)-(h²+k²)=0
Step-by-step explanation:
Given --->
------------
Coordinates of centre of circle =(a,a)
Coordinates of point on circle=(h,k)
To find---> Equation of circle
------------
Solution--->
--------------
Let centre of circle be O and point on circle be P
So Coordinate of O =(a,a)
Coordinate of P=(h,k)
Distance between centre and any point on circle is equal to radius
So radius =OP
=√{(a-h)²+(a-k)²} ,here square root is on whole expression
Equation of circle having centre at (α,β)and radiua r is
(x-α)²+(y-β)²=r²
Equation of required circle
=>(x-a)²+(y-a)²={√{(a-h)²+(a-k)²}}²
=>(x-a)²+(y-a)²=(a-h)²+(a-k)²
=>x²+a²-2ax+y²+a²-2ay=a²+h²-2ah+a²+
k² -2ak
=>x²+y²-2ax-2ay=h²-2ah+k²-2ak
=>x²+y²-2ax-2ay+2ah+2ak-h²-k²=0
=>x²+y²-2a(x+y)+2a(h+k)-(h²+k²)=0