Math, asked by chinmoy2546, 11 months ago

Equation of the circle which is such that the lengths of the tangents to it from the points (1,0), (0, 2) and
(3, 2) are 1, √7 and √2 respectively is​

Answers

Answered by amitnrw
3

Equation of the circle which is such that the lengths of the tangents to it from the points (1,0), (0, 2) and (3, 2) are 1, √7 and √2 respectively is​

(x - 7/3)² + (y - 5/12)²  =  (√137 / 12)²

Step-by-step explanation:

Let say Equation of circle

(x - h)²  + (y - k)² = r²

h & k are center of circle & r = radius

lengths of the tangents to Circle from the points (1,0), (0, 2) and

(3, 2) are 1, √7 and √2 respectively

  ( h - 1)² + (k - 0)²  = r² + 1²

=>  ( h - 1)² + k² = r² + 1      Eq 1

( h - 0)² + (k - 2)²  = r² + √7²

=>   h² + (k-2)² = r² + 7     Eq 2

( h - 3)² + (k - 2)²  = r² + √2²

=>   (h-3)² + (k-2)² = r² + 2     Eq 3

Eq3 - Eq 2

=>  (h-3)² - h² = -5

=>  9 - 6h  = - 5

=> 6h = 14

=> 3h = 7

=> h = 7/3

Eq2  - Eq 1

h² -  ( h - 1)² +  (k-2)² -  k² = 6

=>  2h - 1  + 4 - 4k = 6

=> 2(7/3) -  3  = 4k

=> 14 - 9  = 12k

=> k = 5/12

putting h & k in Eq 1

( h - 1)² + k² = r² + 1

( 7/3 - 1)²  + (5/12)²  = r² + 1

=> 16/9  + 25/144 = r² + 1

=> 256 + 25  = 144r²  + 144

=> 144r² = 137

=> r = √137 / 12

(x - h)²  + (y - k)² = r²

=> (x - 7/3)² + (y - 5/12)²  =  (√137 / 12)²

Similar questions