Math, asked by ShreyaTumma, 1 year ago

equation of the tangent to the curve y = 1-e^-x/2 at the point where the curve cuts y axis is

Answers

Answered by MaheswariS
8

\textbf{Given:}

y=1-e^\frac{-x}{2}

\text{At the point where the tangent cuts y-axis, x=0}

\implies\,y=1-e^0=1-1=0

\text{Now,}

\frac{dy}{dx}=e^\frac{-x}{2}\,(\frac{-1}{2})

\text{Slope of tangent,}\;m=\frac{dy}{dx}_{(0,0)}=e^0\,(\frac{-1}{2})}

\implies\,m=\frac{-1}{2}

\text{The equation of tangent is}

y-y_1=m(x-x_1)

y-0=\frac{-1}{2}(x-0)

y=\frac{-x}{2}

2y=-x

\implies\boxed{\bf\,x+2y=0}

Similar questions