equation .Previous year IIT jee Question
Chapter :- complex number and quadratic
Answers
EXPLANATION.
If α ≠ β.
⇒ α² = 5α - 3.
⇒ β² = 5β - 3.
As we know that,
We can write equation as,
α, β are the roots of the equation,
⇒ x² = 5x - 3.
⇒ x² - 5x + 3 = 0.
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = -b/a.
⇒ α + β = -(-5)/1 = 5.
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ αβ = 3/1 = 3.
The equation whose roots are α/β and β/α.
⇒ α/β + β/α.
⇒ (α² + β²)/(αβ).
⇒ [(α + β)² - 2αβ]/(αβ).
⇒ [(5)² - 2(3)]/(3).
⇒ [25 - 6]/3.
⇒ 19/3.
⇒ α + β = 19/3.
⇒ α/β x β/α = 1.
⇒ αβ = 1.
Formula of the quadratic polynomial.
⇒ x² - (α + β)x + αβ.
Put the values in the equation, we get.
⇒ x² - (19/3)x + (1) = 0.
⇒ x² - 19x/3 + 1 = 0.
⇒ 3x² - 19x + 3 = 0.
Option [B] is correct answer.
Answer:
Option (B) 3x² - 19x +3
Step-by-step explanation:
Given :- α² = 5α - 3 → x² - 5x + 3 = 0
and , β² = 5β - 3 → β² - 5β +3 = 0
Those two equations shows that α and β are the roots of the equation x² - 5x + 3 = 0
∴ α + β = 5 and αβ = 3
Now, α / β + β / α = α² + β ² / αβ
- = (α + β)² - 2αβ / αβ
- = 5² - 2 *3 / 3
- = 25 - 6 / 3
- = 19/3
- α/β × β/α = 1
Thus, the equation having roots α / β and β/α is given by
- → x² - ( α/β + β/α )x + α/β × β /α = 0
- → x² - 19/3x + 1 = 0
- → 3x² - 19x + 3 = 0