Math, asked by elliekochneva, 1 year ago

ERROR ANALYSIS: Describe and correct the error in solving the system of linear equations.
2x+y=5 and 3x-2y=4
solve by substitution
(Please provide steps)

Answers

Answered by isafsafiya
5

Answer:

x =2

y = 1

Given:-

2x + y = 5 \:  \:  \:  \:  \:  \:  \: ..........(1) \\ 3x - 2y = 4 \:  \:  \:  \: ............(2) \\  \\

To find:-

  • value of x and y
  • though substitution method.

Solution:-

  • by solving of the given equation fir one of the varibles ,which ever is convenient
  • substitute that value of the varibale in the other equation.

2x + y = 5 \:  \:  \:  \:  \:  \:  \: ..........(1) \\ 3x - 2y = 4 \:  \:  \:  \: ............(2) \\  \\  we \: solve \: the \: 1st \:  \: equation \: for \: x \\  \\ 2x + y = 5 \\ 2x = 5 - y \\ x =  \frac{5 - y}{2}  \:  \: \:  \:  \:  \:  .............(3) \\  \\ substitude \: this \: value \\  \: of \: x \: in \: equation \: 2 \\  \\ 3x - 2y = 4 \\  \\ 3 \times ( \frac{5 - y}{2} ) - 2y = 4 \\  \\  \frac{15- 3y}{2}  - 2y = 4 \\  \\ 15- 3y - 4y = 8 \\  \\ 15- 7y = 8 \\  \\  - 7y = 8 - 15 \\  \\ - 7y =  - 7y \\  \\  y =  1 \\  \\ now \: put \: y = 1 \: in \: eqution \: 3 \\  \\ x =  \frac{5 - y}{2}  \\  \\ x =  \frac{5 - 1}{2}  \\  \\ x =  \frac{4}{2}  \\  \\ x = 2

Similar questions