Math, asked by nashettyshailaja, 8 months ago

es both the
The equation of the circle which touches x-axis at (0,0)
and touches the line 3x + 4y - 5 = 0 is
makes one​

Answers

Answered by amansharma264
44

EXPLANATION.

 \sf :  \implies \:equation \: of \: the \: circle \: which \: touches \: x - axis \: (0,0) \\  \\ \sf :  \implies \: touches \: the \: line \: 3x + 4y - 5 = 0 \\  \\ \sf :  \implies \: centre \: of \: the \: circle \: lies \: on \: y  - \: axis = (0,k)

 \sf : \implies \: equation \: of \: circle \:  =  {x}^{2}  +  {y}^{2}   =  {a}^{2}  \\  \\ \:  \sf : \implies \: (x - 0) {}^{2}  + (y - k) {}^{2} =  {k}^{2} \\  \\    \sf : \implies \:  \:  {x}^{2}  +  {y}^{2}  +  {k}^{2}  - 2ky =  {k}^{2}  \\  \\  \sf : \implies \:  {x}^{2} +  {y}^{2}  - 2ky \:  = 0 \:  \: .....(1)

 \sf : \implies \: circle \: touch \: the \: line \: 3x + 4y - 5 = 0 \\  \\  \sf : \implies \:  \: k \:  =  | \frac{3(0) +  4(k) - 5}{ \sqrt{ {3}^{2}  +  {4}^{2} } } |  \\  \\  \sf : \implies \: k \:  =  | \frac{4k - 5}{5} |  \\  \\  \sf : \implies \: 5k \:  = 4k - 5 \\  \\  \sf : \implies \: k =  - 5

 \sf : \implies \: equation \: of \: circle \\  \\  \sf : \implies \:  {x}^{2} +  {y}^{2}   - 2ky \:  = 0 \\  \\  \sf : \implies \:  {x}^{2} +  {y}^{2} - 2( - 5)y = 0 \\  \\    \sf : \implies \:  {x}^{2}  +  {y}^{2} + 10y = 0

Answered by rocky200216
91

\bf{\gray{\underbrace{\blue{GIVEN:-}}}}

  • The Equation of a circle touches x-axis at (0 , 0) .

  • And touches the line "3x + 4y - 5 = 0" .

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  • The Equation of circle .

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

Let,

  • The Equation of the circle touches y-axis at (0 , k)

✨ So, Radius of the circle is "k" .

  • \bf\red{Center} = (h , k) = (0 , k)

☯︎ Firstly, we can find the perpendicular distance of the straight line 3x + 4y - 5 = 0 from center (h , k) = (0 , k) by using the equation;

\orange\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{Distance\:=\:\dfrac{\left|\:ah\:+\:bk\:+\:c\:\right|}{\sqrt{a^2\:+\:b^2}}\:}}}}}

✨ The value of a, b and c can be obtained from 3x + 4y - 5 = 0;

  • \bf\red{a} = 3

  • \bf\red{b} = 4

  • \bf\red{c} = -5

\rm{:\implies\:Distance\:=\:\dfrac{\left|\:3\times{0}\:+\:4\times{k}\:-\:5\:\right|}{\sqrt{3^2\:+\:4^2}}\:}

  • \bf\red{Distance} = Radius = k

\rm{:\implies\:k\:=\:\dfrac{\left|\:0\:+\:4k\:-\:5\:\right|}{\sqrt{9\:+\:16}}\:}

\rm{:\implies\:k\:=\:\dfrac{\left|\:4k\:-\:5\:\right|}{\sqrt{25}}\:}

\rm{:\implies\:k\:=\:\dfrac{\left|\:4k\:-\:5\:\right|}{5}\:}

\rm{:\implies\:5k\:=\:4k\:-\:5\:}

\rm{:\implies\:5k\:-\:4k\:=\:-5\:}

\bf\green{:\implies\:k\:=\:-5\:}

  • \bf\red{(h\:,\:k)} = (0 , -5)

☯︎ Now for equation of the circle, we can use the following equation :-

\green\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{(x\:-\:h)^2\:+\:(y\:-\:k)^2\:=\:(Radius)^2\:}}}}}

  • \bf\red{Radius} = -5

\rm{:\implies\:(x\:-\:0)^2\:+\:\Big\{y\:-\:(-5)\Big\}^2\:=\:(-5)^2\:}

\rm{:\implies\:x^2\:+\:(y\:+\:5)^2\:=\:25\:}

\rm{:\implies\:x^2\:+\:y^2\:+\:\cancel{25}\:+\:10y\:=\:\cancel{25}\:}

\bf\blue{:\implies\:x^2\:+\:y^2\:+\:10y\:=\:0\:}

\red\therefore The Equation of circle is " + + 10y = 0 " .

Similar questions