Math, asked by educationmaster37, 11 months ago

es question ko shi se solve krne wale ko Corona nii hoga✌️✌️​

Attachments:

Answers

Answered by Anonymous
7

AnswEr :

\:\bullet\:\sf\ P(x) = x^3 - 3x^2 + x + 2

\:\bullet\:\sf\ q(x) = x - 2

\:\bullet\:\sf\ r(x) = -2x + 4

\:\bullet\:\sf\ g(x) =?

\normalsize\sf\bullet\:\ Here, \: we \: use \: Division \: algorithm \: \\ \normalsize\sf\ to \: find \: g(x)

 \rule{100}1

\normalsize\sf\:\:\:\:\:\qquad\:\underbrace{Division \: algorithm}

\normalsize\sf\qquad\:\underbrace{P(x) = g(x)  \times\ q(x) + r(x) }

\normalsize\sf\ [Dividend = Divisor \times\ quotient + Remainder]

 \rule{100}1

\underline{\bigstar\:\textsf{Let's \: head \: to \: the \: question \: now:}}

\normalsize\dashrightarrow\sf\ P(x) = g(x) \times\ q(x) + r(x) \\ \\ \normalsize\dashrightarrow\sf\ x^3 - 3x^2 + x + 2 = g(x) \times\ (x - 2) + (- 2x + 4) \\ \\ \normalsize\dashrightarrow\sf\ x^3 - 3x^2 + x + 2 +2x - 4 = g(x) \times\ (x - 2) \\ \\ \normalsize\dashrightarrow\sf\ x^3 - 3x^2 + 3x - 2 = g(x) \times\ (x - 2) \\ \\ \normalsize\dashrightarrow\sf\frac{x^3 - 3x^2 + 3x -2}{(x -2)} = g(x)

\begin{array}{ c | l }  & \sf\ x^2 - x + 1 \\ \cline{1-2}\sf\ x - 2 & \sf\ x^3- 3x^2 + 3x - 2\\ & \sf\  x^3 - 3x^2 \\ &  - \: \: \:   + \\ \cline{2-2} & \sf\quad\ - x^2 + 3x -2 \\ & \sf\quad\ -x^2 + 2x \\ & \quad\ + \: \: \: \:  -  \\ \cline{2-2} & \sf\: \: \: \: \: \: \: \: \: \: \:  \qquad\ x - 2  \\  & \sf\: \: \: \: \: \: \: \: \: \: \:  \qquad\ x - 2\\ & \: \: \: \: \: \: \: \: \qquad\ - \: \: \: + \\ \cline{2-2} & \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \qquad\  0 \end{array}

\normalsize\dashrightarrow\sf\ g(x) = x^2 - x + 1

\normalsize\dashrightarrow{\underline{\boxed{\sf \red{g(x) = x^2 - x + 1}}}}

Similar questions