Math, asked by levikunaal3622, 1 month ago

Escape velocity for Earth is 11.2 kms - 1. What will be the escape velocity for a planet whose mass and radius are twice those of the Earth?

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

and by the way you should have to ask this question under physics subject

but let it be physics and maths are my favorite

so no worries

Step-by-step explanation:

so \: here \\ escape \: velocity \: of \: earth \: (V1) = 11.2 \:  \frac{km}{s}  \\  \\ moreover \: let \: mass \: of \: earth \: be \: M \: and \: its \:  \\ radius \: be \: R \\ moreover \: for \: a \: certain \: planet \:  \\ let \: its \: mass \: be \: M1 \: and \: its \: radius \: be \: R1

so \: we \: know \: that \\ escape \: velocity \:  =  \sqrt{ \frac{2G   M}{R} }  \\  \\ so \: for \: a \: certain \: planet \\ R1 = 2.R \\ M1 - 2.M \\  \\ so \: escape \: velocity \: of \: earth  \: ie \\ V1 =  \sqrt{ \frac{2G   M}{R} }  \\  \\ 11.2 =  \sqrt{ \frac{2G   M}{R} }  \:  \:  \:  \:  \:  \: (1)

similarly \:  \\ escape \: velocity \: of \: planet \: ie \\ V2 =  \sqrt{ \frac{2G .  M1}{R1} }  \\  \\  =  \sqrt{ \frac{2G  \  2 M}{2R} }  \\  \\  =  \sqrt{ \frac{2G .  M}{R} }  \\  \\  = 11.2 \:   \: \frac{km}{s}  \:  \:  \:  \:  \:  \:  \: from \: (1)

hence \: escape \: velocity \: of \: planet \\ whose \: mass \: and \: radius \: are \: twice \: of \:  \\ that \: of \: earth \: \:  is \:  \: 11.2 \:  \: km/s

Similar questions