English, asked by rafiu26, 1 year ago

Essay on teleportation

Answers

Answered by ayano71
2
Teleportation is the capacity to instantly move objects from one place to another. Throughout this semester, we have journeyed through the world of Newtonian physics as objects move because they push and pull on each other. If an object wants to go somewhere, a force has to be exerted in order to move said object to the desired location. Makes sense, right? Well, there’s this thing called Quantum Theory and it doesn’t care much for your common sense. In Quantum Theory, particles like electrons can exhibit wavelike behavior as described by Erwin Schrödinger’s famous wave equation. It may sound weird but electrons can be described as waves of probability which “tell you only the chance of finding a particular electron at any place and any time.” This probability pertaining to electrons is known as the uncertainty principle which states that “you cannot know both the exact velocity and the position of an electron at the same time.” Therefore, in the strange world of the Quantum, it makes perfect sense for an electron to be at more than once place at a time and objects are described as the sum of all their possible states since there is no way to know for sure where its electrons are located. This might seem counter-intuitive since the physical world is full of objects that don’t spontaneously disappear and reappear such as our bodies. The human body however, contains trillions upon trillions of electrons and all the quantum events taking place inside our body even out over time giving it the appearance of being solid. Interestingly, if we were to calculate the probability of our body disappearing and reappearing in the next room, we find that we would have to wait “longer than the lifetime of the universe” to witness such a quantum event. This type of event is impossible under Newtonian physics yet is possible in Quantum theory, albeit the probability for it taking place is unimaginably small. 


Einstein didn’t like probability and chance being introduced into the heart of physics once saying, “For my part, at least, I am convinced that [God] doesn’t throw dice.” He and two of his colleagues even performed an experiment in an effort to disprove Quantum Theory based on the idea of quantum entanglement. This is the concept that “ particles vibrating in coherence have some kind of deep connection linking them together.” This means that if two electrons are coherent, meaning they are vibrating at the same frequency, then what happens to one will affect the other regardless of the distance between the two since “there is still an invisible Schrödinger wave connecting both of them”. Not surprisingly, Einstein was unable to disprove Quantum Theory through quantum entanglement and ironically, it is this same.
concept that is the basis for teleportation.

hope it helps ! (^^)
Answered by sHairo
0
The impossible is that which is considered to be unfeasible or unattainable. We cannot flap our arms and fly, we can’t hold our breath for hours underwater and we cannot see in the dark. Even though these feats are considered impossible to an ordinary human being, through the use of science and technology we human have conquered the skies, journeyed to the watery depths of the ocean and peered into the darkness of the night without the help of light (visible light to be exact). We have seen that as time goes on and technology becomes more and more advanced, science is able to blur the line between the impossible and the possible, turning science fiction into science fact. Dr. Michio Kaku, theoretical physicist and Co-founder of Grand Unified String Field Theory, uses his book “Physics of the Impossible” to demonstrate the underlying physics behind many of the “impossibilities” that today’s scientists toil over so that we may have a better understanding of which are realistically within the reach of our civilization. From force fields to parallel universes and perpetual motion machines, Kaku divides the impossibilities that are throughout his book into three categories: Class I, II and III impossibilities. The first refers to “technologies that are impossible today but that do not violate the known laws of physics” and that might become possible in this century or the next. The second concerns those technologies that “sit at the very edge of our understanding of the physical world” and that might be possible in a thousand to a million years. Lastly, Class III impossibilities apply to technologies that “violate the known laws of physics” and that if possible, “would represent a fundamental shift in our understanding of physics.” Intrigued? I know I was. Such things had always caught my attention but I would dismiss them as just that, interesting queries that are ultimately meaningless because of their improbability. It was ignorant to do so, however. Even though Kaku makes the physics behind the impossibilities easy to understand, Class II and III impossibilities are very abstract and my limited knowledge in theoretical physics prohibits me in properly explaining them. As a result, I have chosen to explain the Class I impossibility that intrigued me the most: teleportation.
Similar questions