essay on the universe 3000 words i will mark u as brainliest
Answers
Answer:
When we look at the sky, we see different kinds of natural bodies like the sun, the stars, the moon, and so on. The natural bodies in the sky are called celestial bodies or heavenly bodies. They are part of our universe. The universe is a huge space which contains everything that exists. The celestial bodies that we see are just a small fraction of the bodies that exist in the universe. One of the reasons why we do not see more of them is that they are very, very far away.
To measure the large distances in the universe, scientists use a unit of length called the light year. A light year is the distance travelled by light in one year. Light travels 9.46 trillion km in a year
One light year represents this huge distance. Proxima Centauri, the star closest to our solar system, is 4.2 light years from us. This means that light from this star takes 4.2 years to reach us. In this article, we shall learn a bit about stars and our solar system. But before that, let us see how the universe was formed.
Scientists believe that the universe was born after a massive explosion called the ‘big bang’. A long time after the big bang, stars like our sun were formed. At that time, clouds of hot gases and particles revolved around the sun. Over time, many particles got stuck together to form large bodies. These bodies pulled in smaller objects near them by gravitational force. This made them larger still. These bodies finally became the planets.
Answer:
At a particular instant roughly 15 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun’s core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.
At a particular instant roughly 15 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun’s core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.At that time, the free quarks became confined in neutrons and protons. After the universe had grown by another factor of 1,000, protons and neutrons combined to form atomic nuclei, including most of the helium and deuterium present today. All of this occurred within the first minute of the expansion. Conditions were still too hot, however, for atomic nuclei to capture electrons. Neutral atoms appeared in abundance only after the expansion had continued for 300,000 years and the universe was 1,000 times smaller than it is now. The neutral atoms then began to coalesce into gas clouds, which later evolved into stars. By the time the universe had expanded to one fifth its present size, the stars had formed groups recognizable as young galaxies.