Math, asked by ajay123213, 1 month ago

est
Find three numbers in G.P. such that their
sum is 21 and sum of their squares is 189.​

Answers

Answered by devadipurua
0

Answer:

6iykdykdyjsgjfuldjgfjlsdhdulctjsuldhdlushrdykdykftjskysrhdlusjtckyzlhfykfildtjfjystidyfdhfgsjfdkyahrdtayryraugtjsoufts

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

 \sf \: Let  \: three \: numbers \: in \:  GP \: be \: a, \: ar, \: a {r}^{2}

According to statement,

  • The sum of three numbers in GP is 21.

\bf :\longmapsto\:a + ar  +  {ar}^{2}  = 21-  -  - (1)

Again,

According to statement,

  • The sum of the squares of terms of GP is 189

\bf :\longmapsto\: {a}^{2}  +  {a}^{2}  {r}^{2}  +  {a}^{2}  {r}^{4}  = 189 -  - (2)

Now, Squaring both sides of equation (1), we get

\rm :\longmapsto\: {(a + ar +  {ar}^{2} )}^{2}  =  {(21)}^{2}

\rm :\longmapsto\: {a}^{2} +  {a}^{2} {r}^{2} +  {a}^{2} {r}^{4} + 2 {a}^{2}r + 2 {a}^{2} {r}^{3} + 2 {a}^{2} {r}^{2} = 441

\rm :\longmapsto\:189 + 2ar(a +  {ar}^{2}  + ar) = 441

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \boxed{ \bf \because \{ \: using \: (2) \}}

\rm :\longmapsto\:2ar \times 21 = 441 - 189

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \boxed{ \bf \because \{ \: using \: (1) \}}

\rm :\longmapsto\:42ar = 252

\rm :\implies\:ar = 6

\bf :\implies\:a = \dfrac{6}{r}  -  - (3)

Now, from equation (1), we have

\rm :\longmapsto\:a + ar +  {ar}^{2}  = 21

\rm :\longmapsto\:a(1 + r +  {r}^{2} ) = 21

\rm :\longmapsto\:\dfrac{6}{r} (1 + r +  {r}^{2} ) = 21

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \boxed{ \bf \because \{ \: using \: (3) \}}

\rm :\longmapsto\:6 + 6r +  {6r}^{2}  = 21r

\rm :\longmapsto\: {6r}^{2}  - 15r + 6 = 0

\rm :\longmapsto\: {2r}^{2}  - 5r + 2 = 0

\rm :\longmapsto\: {2r}^{2}  - 4r - r + 2 = 0

\rm :\longmapsto\:2r(r - 2) - 1(r - 2) = 0

\rm :\longmapsto\:(2r - 1)(r - 2) = 0

\bf\implies \:r = \dfrac{1}{2}  \:  \:  \: or \:  \:  \: r = 2

So, we get values of 'a' from equation (3) as

\begin{gathered}\boxed{\begin{array}{c|c} \bf r & \bf a \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf 3 \\ \\ \sf \dfrac{1}{2}  & \sf 12 \end{array}} \\ \end{gathered}

Two cases arises,

Case :-1

\rm :\longmapsto\:When \: a \:  =  \: 3 \: and \: r \:  =  \: 2

\begin{gathered}\begin{gathered}\bf \: Numbers \:  are - \begin{cases} &\sf{a = 3} \\ &\sf{ar = 2 \times 3 = 6} \\ &\sf{ {ar}^{2} = 3 \times {2}^{2} = 12   } \end{cases}\end{gathered}\end{gathered}

Case :- 2

\rm :\longmapsto\:When \: a = 12 \:  \: and \:  \: r \:  =  \: \dfrac{1}{2}

\begin{gathered}\begin{gathered}\bf \: Numbers \:  are - \begin{cases} &\sf{a = 12} \\ &\sf{ar = 12 \times \dfrac{1}{2} = 6} \\ &\sf{ {ar}^{2} = 12 \times {\bigg( \dfrac{1}{2}\bigg) }^{2} = 3} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

↝ nᵗʰ term of an Geometric sequence is,

 \rm :\longmapsto\:\boxed{ \bf \: a_n =  {ar}^{n - 1} }

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

↝ Sum of n term of an Geometric sequence is,

 \boxed{ \bf \: S_n = \dfrac{a( {r}^{n}  - 1)}{r - 1}  \: provided \: r \ne \: 1}

 \boxed{ \bf \: S_n \:  =  \: n \times a \:  \:  \:  \: provided \: that \: r \:  =  \: 1}

 \boxed{ \bf \: S_ \infty  = \dfrac{a}{1 - r}  \: provided \: that \:  |r|   < 1}

Similar questions