Math, asked by wahengbamrajmiller, 1 month ago

Established the formula Sn =n/2[2a+(n-1)d] for the sum of the first n terms of an AP.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let us consider an AP series whose

  • First term is a

  • Common difference is d

  • Number of terms is n.

 \sf \: Let \: a_1, \: a_2, \: a_3, -  -  -  ,a_{n - 1}, \: a_n \: be \: n \: terms \: of \: AP

and

 \sf \: Let \: S_n \: represents \: sum \: of \: n \: terms \: of \: AP

So,

\rm :\longmapsto\:S_n = a_1 + a_2 +  -  -  -  + a_{n - 1} + a_n -  -  - (1)

can also be rewritten as

\rm :\longmapsto\:S_n = a_n + a_{n - 1} +  -  -  -  + a_2 + a_1 -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:2S_n = (a_1 + a_n)+(a_2 +  a_{n - 1}) +  -  - + (a_{n - 1} + a_2) + (a_n+ a_1)

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a_1 = a

\rm :\longmapsto\:a_2 = a + d

\rm :\longmapsto\:a_3 = a + 2d

.

.

.

.

.

\rm :\longmapsto\:a_{n - 1} = a + (n - 2)d

\rm :\longmapsto\:a_{n} = a + (n - 1)d

So,

\rm :\longmapsto\:a_1 + a_{n} = a + a + (n - 1)d = 2a + (n - 1)d

\rm :\longmapsto\:a_2 + a_{n - 1} = a + d + a + (n - 2)d = 2a + (n - 1)d

So, on substituting all these values, we get

\rm :\longmapsto\:2S_n = \bigg(2a + (n - 1)d\bigg) + \bigg(2a + (n - 1)d\bigg) +  -  -  -  + \bigg(2a + (n - 1)d\bigg)

\rm :\longmapsto\:2S_n =n \bigg(2a + (n - 1)d\bigg)

\bf\implies \: \:  S_n=  \: \dfrac{n}{2}\bigg(2a + (n - 1)d\bigg)

Hence, Proved

Answered by adobemee199
0

Step-by-step explanation:

S=n/2(2a+(n-1)d find a here

Similar questions