Physics, asked by PragyaTbia, 1 year ago

Estimate the fraction of molecular volume to the actual volume occupied by Oxygen gas at STP. Take the diameter of an oxygen molecule to be  3 \AA .

Answers

Answered by Humanoid
0
Diameter of an oxygen molecule, d = 3Å
Radius, r = d/2 = 3/2 = 1.5 Å = 1.5 × 10–8 cm
Actual volume occupied by 1 mole of oxygen gas at STP = 22400 cm3
Molecular volume of oxygen gas, V = (4/3)πr3N
Where, N is Avogadro’s number = 6.023 × 1023molecules/mole
∴ V = (4/3) × 3.14 × (1.5 × 10-8)3 × 6.023 × 1023 = 8.51 cm3
Ratio of the molecular volume to the actual volume of oxygen = 8.51 / 22400
= 3.8 × 10-4.
Answered by Anonymous
13

\large{\underline{\rm{\purple{\bf{Question:-}}}}}

Estimate the fraction of molecular volume to the actual volume occupied by oxygen at STP. Take the diameter of an oxygen molecule to be 3 Å

\large{\underline{\rm{\purple{\bf{Given:-}}}}}

Diameter of an oxygen molecule, d = 3Å

\large{\underline{\rm{\purple{\bf{To \: Find:-}}}}}

Estimate the fraction of molecular volume to the actual volume occupied by Oxygen gas at STP.

\large{\underline{\rm{\purple{\bf{Solution:-}}}}}

We know that,

  • d = Diameter
  • r = Radius
  • N = Avogardo's number
  • V = Volume

Given that,

Diameter of an oxygen molecule, d = 3Å

Then,

\boxed{ \sf Radius = \dfrac{d}{2} }

\sf = 1.5 Å

\sf = 1.5 \times 10^{-8} \: cm

We know,

Actual volume occupied by 1 mole of oxygen at STP = \sf 22400 \: cm^{2}

Molecular volume of oxygen, V = \sf N_A \bigg(\dfrac{4 \pi r^{2}}{2} \bigg)

Where, N is Avogadro’s number = \sf 6.023 \times 10^{23} \: molecules/mole

Therefore, molecular volume of oxygen, V = \sf 6.023 \times 10^{23} \times 3.14 \: (1.5 \times 10^{-8})^{2} \times \dfrac{4}{3} =8.51 \: cm^{3}

Thus, the ratio of the molecular volume to the actual volume of oxygen = \sf \dfrac{8.51}{22400} = 3.8 \times 10^{-4}

Similar questions