Physics, asked by chavandsaurabh, 9 months ago

Estimate the global temperature of our planet (in Celsius) if we consider it as a black-body in thermal equilibrium if Temperature of the Sun is 5700 K, Radius of the Sun is 7 × 10^5 km and distance between earth and sun is 150 × 10^6 km. (two decimal places only)​

Answers

Answered by Anonymous
17

Answer:

 \boxed{\mathfrak{Global \ temperature \ of \ our \ planet = 2.18 \degree C}}

Given:

Temperature of sun ( \sf T_s ) = 5700 K

Radius of sun ( \sf R_s ) =  \sf 7 \times 10^5 km

Distance between earth and sun (r) =  \sf 150 \times 10^6 km

Explanation:

Power radiated by sun's surface:

 \rm P = \sigma A_s {T_s}^{4} \\  \\  \rm P =  \sigma 4\pi{R_s}^{2}{T_s}^{4}

 \rm \sigma \longrightarrow Stefan's \: constant

Intensity at earth's surface:

 \rm I = \dfrac{P}{4\pi r^2} \\  \\  \rm I = \dfrac{  \sigma \cancel{4\pi}{R_s}^{2}{T_s}^{4}}{ \cancel{4\pi} {r}^{2} }  \\  \\  \rm I =\dfrac{  \sigma {R_s}^{2}{T_s}^{4}}{  {r}^{2} }

Power absorbed by earth:

\rm P_{absorbed} = I \times \pi {R_e}^2 \\ \\ \rm P_{absorbed} =  \frac{  \sigma \pi{R_s}^{2}{R_e}^2{T_s}^{4}}{  {r}^{2} }

Power emitted by earth:

\rm P_{emitted} =  \sigma \times 4\pi {R_e}^{2} \times {T_e}^{4}

 \rm R_e \longrightarrow Radius \ of \ earth

 \rm T_e \longrightarrow Temperature \ of \ earth

At Equilibrium,

\rm \implies P_{absorbed} = P_{emitted} \\ \\ \rm \implies \frac{ \cancel{ \sigma} \cancel{\pi}{R_s}^{2} \cancel{{R_e}^2}{T_s}^{4}}{  {r}^{2} } =  \cancel{ \sigma} \times 4 \cancel{\pi{R_e}^{2}} \times {T_e}^{4} \\ \\ \rm \implies \frac{{R_s}^2 {T_s}^4}{r^2} = 4 {T_e}^4 \\ \\ \rm \implies{T_e}^4 = \frac{{R_s}^2 {T_s}^4}{4r^2}  \\ \\ \rm \implies T_e =  {(\frac{{R_s}^2 {T_s}^4}{4r^2} )}^{ \frac{1}{4} }  \\ \\ \rm \implies T_e =  \frac{T_s \sqrt{R_s} }{ \sqrt{2r} }  \\ \\ \rm \implies T_e = T_s \sqrt{ \dfrac{R_s}{2r} }

By substituting value we get:

 \rm \implies T_e = 5700 \times  \sqrt{ \dfrac{7 \times  {10}^{5} }{2 \times 150 \times  {10}^{6} }   }  \\  \\  \rm \implies T_e \approx 275.33 \: K \\  \\  \rm \implies T_e \approx 2.18 \degree C

Similar questions