Math, asked by riseofgsm, 5 months ago

Euler's theorem on homogeneous function

x³+y³/x+y, prove that x(du/dx) +y(du/dy)=2u​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{u(x,y)=\dfrac{x^3+y^3}{x+y}}

\textbf{To prove:}

\mathsf{x\,\dfrac{{\partial}u}{\partial}x}+y\,\dfrac{{\partial}u}{\partial}y}=2u}

\textbf{Solution:}

\textbf{Euler's theorem:}

\boxed{\begin{minipage}{7cm}$\\\textsf{If u(x,y) is a homogeneous function of degree n,}\\\\\mathsf{then,\;x\,\dfrac{{\partial}u}{{\partial}x}+y\,\dfrac{{\partial}u}{{\partial}y}=n\,u}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{u(tx,ty)=\dfrac{(tx)^3+(ty)^3}{tx+ty}}

\mathsf{u(tx,ty)=\dfrac{t^3x^3+t^3y^3}{tx+ty}}

\mathsf{u(tx,ty)=\dfrac{t^3(x^3+y^3)}{t(x+y)}}

\mathsf{u(tx,ty)=t^2\,\dfrac{(x^3+y^3)}{x+y}}

\mathsf{u(tx,ty)=t^2\,u(x,y)}

\therefore\textsf{u is a homogeneous function of degree 2}

\mathsf{By\;Euler's\;theorem}

\mathsf{x\,\dfrac{{\partial}u}{\partial}x}+y\,\dfrac{{\partial}u}{\partial}y}=2u}

\mathsf{Hence\;proved}

\textbf{Find more:}

If u=sin^-1(x2+y2/x+y)prove that xdu/dx)+ydu/dy)=tan u

https://brainly.in/question/12684777

Similar questions