Math, asked by mabhosale211003, 3 days ago

Evaliate lim x--->pi/2 cotx.log (secx) By I Hospital Rule​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:  cotx. \: log(secx) \\

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:   \frac{log(secx)}{tanx}  \\

If we substitute directly the value of x, we get

\rm \:  =  \:  \dfrac{ \infty }{ \infty }  \\

which is indeterminant form.

So, Consider again

\rm \: \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:   \frac{log(secx)}{tanx}  \\

On applying L Hospital Rule, we get

\rm \: =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:   \frac{\dfrac{d}{dx}log(secx)}{\dfrac{d}{dx}tanx}  \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \: }} \\

and

\boxed{ \rm{ \:\dfrac{d}{dx}tanx \:  =  \:   {sec}^{2}x  \: }} \\

So, using these results, we get

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{\dfrac{1}{secx}\dfrac{d}{dx}(secx) }{ {sec}^{2} x}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{secx \: tanx }{ {sec}^{3} x}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{ tanx }{ {sec}^{2} x}  \\

On applying L Hospital Rule, we get

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{\dfrac{d}{dx} tanx }{\dfrac{d}{dx} {sec}^{2} x}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{{sec}^{2}x}{2 \: secx \: (secx \: tanx)}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{{sec}^{2}x}{2 \:  {sec}^{2} x \: tanx}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{1}{2 tanx}  \\

\rm \:  =  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \: \dfrac{cotx}{2}  \\

\rm \:  =  \: \dfrac{1}{2} \times 0 \\

\rm \:  =  \: 0 \\

Hence,

 \\ \color{green}\rm\implies \:\boxed{ \rm{ \:\displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:  cotx. \: log(secx) = 0 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions