Math, asked by sudhamaduri9650, 11 months ago

Evaluate 0.2175757575....using the sum of an infinite geometric series

Answers

Answered by shadowsabers03
16

\displaystyle\longrightarrow\sf{0.21757575\dots\ =0.21+0.0075+0.000075+0.00000075+\dots}

\displaystyle\longrightarrow\sf{0.21757575\dots\ =\dfrac{21}{100}+75(0.0001+0.000001+0.00000001+\dots)}

\displaystyle\longrightarrow\sf{0.21757575\dots\ =\dfrac{21}{100}+75\left(\dfrac{1}{10^4}+\dfrac{1}{10^6}+\dfrac{1}{10^8}+\dots\right)}

\displaystyle\longrightarrow\sf{0.21757575\dots\ =\dfrac{21}{100}+75\left(\dfrac{\dfrac{1}{10^4}}{1-\dfrac{1}{10^2}}\right)}

\displaystyle\longrightarrow\sf{0.21757575\dots\ =\dfrac{21}{100}+\dfrac{75\times10^2}{10^4(10^2-1)}}

\displaystyle\longrightarrow\sf{0.21757575\dots\ =\dfrac{21}{100}+\dfrac{75}{99\times100}}

\displaystyle\longrightarrow\sf{\underline{\underline{0.21757575\dots\ =\dfrac{359}{1650}}}}

Answered by Akash0315
1

Answer:

718/3300

Step-by-step explanation:

Similar questions