Math, asked by jeevankishorbabu9985, 4 months ago

Evaluate ∫ 1/√25+9x²
 \huge \pink{∫ 1/√25+9x²}

Answers

Answered by amansharma264
8

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{dx}{\sqrt{25 + 9x^{2}} }

As we know that,

We can write equation as,

Taking 1/3 as common in equation, we get.

\sf \implies \displaystyle \dfrac{1}{3} \int \dfrac{dx}{\sqrt{\bigg(\dfrac{5}{3}\bigg)^{2}   + x^{2} } }

As we know that,

Formula of :

\sf \implies \displaystyle \int \dfrac{dx}{\sqrt{x^{2}  + a^{2} } } = sinh^{-1} \bigg(\dfrac{x}{a} \bigg) + C \ = log \bigg( x + \sqrt{x^{2}  + a^{2} } \bigg) + C

Using this formula in equation, we get.

\sf \implies \displaystyle \dfrac{1}{3} \bigg[ log \bigg(x + \sqrt{x^{2}  + \bigg(\dfrac{5}{3} \bigg)^{2} } \bigg) \bigg] + C

\sf \implies \displaystyle \int \dfrac{dx}{\sqrt{25 + 9x^{2}} } \ = \dfrac{1}{3} \bigg[log \bigg(x + \sqrt{x^{2}  + \bigg(\dfrac{5}{3} \bigg)^{2} } \bigg) \bigg] + C

                                                                                                                       

MORE INFORMATION.

Integration of trigonometric functions.

(1) = ∫dx/a + bsin²x.

(2) = ∫dx/a + bcos²x.

(3) = ∫dx/acos²x + b sinx.cosx + csin²x.

(4) = ∫dx/(a sin x + b sin x)².

Divide numerator and denominator by cos²x in all such type of integrals and then put tan x = t.

Answered by TrueRider
4

We have,

 \sf \: I =  ∫ \bf\frac{1}{ \sqrt{25 + 9x^{2} } \:  }

 \sf \: I =  \frac{1}{3} ∫ \frac{1}{  \bf\sqrt{ (\frac{5}{3} )^{2} +  {x}^{2} } }

So, applying formula,

 \sf∫ \frac{1}{ \sqrt{ {a}^{2}  +  {x}^{2} } }  = In \:[  x +  \sqrt{ {x}^{2} +  {a}^{2}  \:  ] }

Therefore,

 \sf \: I= \frac{1}{3}  \: In \: [ \: x  +  \sqrt{ {x}^{2} + ( \frac{5}{3})^{2}  \:  \: ]  }  + C

Hence, this is the answer

Similar questions
Math, 2 months ago