Math, asked by shri07919, 2 months ago

Evaluate (1^3+2^3+3^3)^1/2​

Answers

Answered by kailashmannem
40

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  •  \sf (1^3 \: + \: 2^3 \: + \: 3^3)^{\scriptsize{\dfrac{1}{2}}}

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  •  \sf (1^3 \: + \: 2^3 \: + \: 3^3)^{\scriptsize{\dfrac{1}{2}}}

Here,

  • We can write  \sf {}^{\scriptsize{\dfrac{1}{2}}} as √.

Now,

  •  \sf \sqrt{(1^3 \: + \: 2^3 \: + \: 3^3)}

  •  \sf \sqrt{1 \: + \: 8 \: + \: 27}

  •  \sf \sqrt{9 \: + \: 27}

  •  \sf \sqrt{36}

  •  \sf \sqrt{6^2}

  • 6

Therefore,

  •  \sf (1^3 \: + \: 2^3 \: + \: 3^3)^{\scriptsize{\dfrac{1}{2}}} \: = \: 6
Answered by GeniusAnswer
18

\large\bf\underline\red{Answer  \: :-}

Given :-

\bigstar\sf{ \: (1 {}^{3}  + 2 {}^{3}  + 3 {}^{3} ) {}^{ \frac{1}{2} } } \\

How to solve :-

We can write 1/2 to √

Required :-

\longmapsto\sf{ \sqrt{(1 {}^{3} + 2 {}^{3}  + 3 {}^{3}  )} } \\ \\  \longmapsto\sf{ \sqrt{1 + 8 + 27} } \:  \:  \:  \:  \:  \:  \:  \\  \\ \longmapsto\sf{ \sqrt{9 + 27} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longmapsto\sf{ \sqrt{36} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \longmapsto\sf{ \sqrt{6 {}^{2} } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \leadsto\sf\purple{ \boxed{ \sf{(1 {}^{3} + 2 {}^{3} + 3 {}^{3} ) {}^{ \frac{1}{2} }   = 6 }}}

_______________________________

Similar questions