Math, asked by gowthamifashiondesig, 3 months ago

Evaluate 1/3+√7+1/√7+√5+1/√5+√3+1/√3+1. I beg u plz answer I request u also​

Answers

Answered by Tomboyish44
24

We're asked to evaluate:

\sf \dashrightarrow \ \dfrac{1}{3 + \sqrt{7}} \ + \ \dfrac{1}{\sqrt{7} + \sqrt{5}} \ + \  \dfrac{1}{\sqrt{5} + \sqrt{3}} \ + \ \dfrac{1}{\sqrt{3} + 1}

In order to evaluate the given expression, let's first rationalize the denominators of each fraction in the expression.

In order to rationalize the denominator of each fraction, we'll need to multiply both the numerator and the denominator of the fraction by the conjugate of the expression in the denominator.

  • Conjugate of 3 + √7 is 3 - √7
  • Conjugate of √7 + √5 is √7 - √5
  • Conjugate of √5 + √3 is √5 - √3
  • Conjugate of √3 + √1 is √3 - √1

Therefore;

\sf \dashrightarrow \ \Bigg[ \ \dfrac{1}{3 + \sqrt{7}} \times \dfrac{3 - \sqrt{7}}{3 - \sqrt{7}} \ \Bigg] + \ \Bigg[ \ \dfrac{1}{\sqrt{7} + \sqrt{5}} \times \dfrac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}} \ \Bigg] \\ \\ \\ \\{ \ \ \ \ \ \ \ \ \ + \ \Bigg[ \ \dfrac{1}{\sqrt{5} + \sqrt{3}} \times \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} \ \Bigg] + \  \Bigg[ \ \dfrac{1}{\sqrt{3} + 1} \times \dfrac{\sqrt{3} - 1}{\sqrt{3} - 1} \ \Bigg]}

[Broken into two lines for readability]

Using (a + b)(a - b) = a² - b² in the denominator we get;

\sf \dashrightarrow \ \Bigg[\dfrac{3 - \sqrt{7}}{(3)^2 - (\sqrt{7})^2}\Bigg] + \Bigg[\dfrac{\sqrt{7} - \sqrt{5}}{(\sqrt{7})^2 - (\sqrt{5})^2}\Bigg] \\ \\ \\ \\ {\ \ \ \ \ \ \ \ \ \ \ \ \ \ + \ \Bigg[\dfrac{\sqrt{5} - \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2}\Bigg] + \Bigg[\dfrac{\sqrt{3} - 1}{(\sqrt{3})^2 - (1)^2}\Bigg]}

\sf \dashrightarrow \ \Bigg[\dfrac{3 - \sqrt{7}}{9 - 7}\Bigg] \ + \ \Bigg[\dfrac{\sqrt{7} - \sqrt{5}}{7 - 5}\Bigg] \ + \ \Bigg[\dfrac{\sqrt{5} - \sqrt{3}}{5 - 3}\Bigg] \ + \ \Bigg[\dfrac{\sqrt{3} - 1}{3 - 1}\Bigg]

\sf \dashrightarrow \ \dfrac{3 - \sqrt{7}}{2} \ + \ \dfrac{\sqrt{7} - \sqrt{5}}{2} \ + \ \dfrac{\sqrt{5} - \sqrt{3}}{2} \ + \ \dfrac{\sqrt{3} - 1}{2}

\sf \dashrightarrow \ \dfrac{3 - \sqrt{7} + \sqrt{7} - \sqrt{5} + \sqrt{5} - \sqrt{3} + \sqrt{3} - 1}{2}

\dashrightarrow \ \sf \dfrac{3 - 1}{2}

\dashrightarrow \ \sf \dfrac{2}{2}

\dashrightarrow \ \sf 1

Therefore, the answer is 1.

Similar questions