Math, asked by gurjardarshiv, 10 days ago

EVALUATE:

(1/4)^-² - 3 (8)^⅔ × 4⁰ + [9/18]-½​

Answers

Answered by Anonymous
9

 \: \huge\mathbb\colorbox{black}{\color{white}{AnSwEr}}

 \sf \: (  { \frac{1}{4} })^{ - 2}  - 3 {(8)}^{ \frac{2}{3} }  {(4)}^{0}  + (  { \frac{9}{16} })^{ \frac{ - 2}{1} }  =  \frac{16}{3}

_____________________________

 \sf \: given \:  =  \\ \sf\: expression \: ( { \frac{1}{4}) }^{ - 2}  - 3 {(8)}^{ \frac{2}{3} }  {(4)}^{0}  +  \\  \sf \:  {( \frac{9}{16} )}^{ \frac{ - 1}{2} }

 \sf \: to \: find \:  =  \: simplyfy \: the \: expression

 \sf \: expression \:  =  > \\   \:  { (\frac{1}{4} )}^{ - 2}  - 3 {(8)}^{ \frac{2}{3} }  {(4)}^{0}  +  {( \frac{9}{16}) }^{ \frac{ - 1}{2} }

 \sf \: Factor  \: the \:  bracket \:  terms \:  into \:  power,

 \sf \:  {4}^{2}  - 3 ({2}^{3})^{ \frac{2}{3} }   \times 1 +  { (\frac{3}{4}) }^{2 \times ( \frac{ - 1}{2} )}

 = >  \: 16 - 3  \times  {2}^{2} +  {( \frac{3}{4} )}^{ - 1}

 =  >  \sf \: 16 - 12 +  \frac{4}{3}

 \sf \:  =  >  \: 4 +  \frac{4}{3}

 \sf \:  =  >  \:  \frac{12 + 4}{3}

 \sf \:  =  >  \frac{16}{3}  \: is \: your \: answer

hope it was helpful to you

Answered by xxblackqueenxx37
52

 \: \: •\huge\bigstar{\underline{{\red{A}{\pink{n}{\color{blue}{s}{\color{gold}{w}{\color{aqua}{e}{\color{lime}{r}}}}}}}}}\huge\bigstar•

hope it was helpful to you

Attachments:
Similar questions