Math, asked by HARSHKUMARSINGH3491, 1 year ago

Evaluate : ∫1+cosx1−cosxdx

Answers

Answered by Anonymous
8

Correct Question:

  • \int \frac{1  +  \cos(x) }{1 -  \cos(x) }dx

Answer:

  • \large \bold\red{  - 2 \cot( \frac{x}{2} )  - x + c}

Step-by-step explanation:

Given,

  • \int \frac{1  +  \cos(x) }{1 -  \cos(x) }dx

We know that,

 \bold{1 +  \cos(2 \alpha )  = 2 { \cos }^{2}   \alpha  } \\ and \\  \bold{1 -  \cos(2 \alpha )  = 2 { \sin }^{2}  \alpha }

Therefore,

We get,

 = \int \frac{2 { \cos }^{2}( \frac{x}{2})  }{2 { \sin }^{2}( \frac{x}{2} ) } dx \\  \\  = \int { \cot }^{2} ( \frac{x}{2}) dx

But,

We know that,

  \bold{{ \cot }^{2}  \alpha  =  { \cosec}^{2}  \alpha  - 1}

Therefore,

We get,

 = \int( { \cosec }^{2}  \frac{x}{2}  - 1)dx \\  \\  = \int {cosec}^{2}  \frac{x}{2} \: dx  - \int \: dx \:  \:  \:  \:  \:  \: ........(i)

Now,

Let,

 \frac{x}{2}  = t

On differentiating both sides wrt x,

We get,

 =  > dx = 2dt

Substituting this value in eqn (i),

We get,

=2\int{cosec}^{2}t-\int\:dx\\\\=-2cot(t)-x+C

Now,

Putting the value of t,

We get,

 = \large \bold{  - 2 \cot( \frac{x}{2} )  - x + c}

Where,

C is any arbitrary constant.

Similar questions