Math, asked by vedangrc, 7 hours ago

Evaluate ∫ 1 dx./(sinx. cosx)

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{sinx \: cosx}

can be rewritten as

\rm \:  =  \: 2 \: \displaystyle\int\rm  \frac{dx}{2 \: sinx \: cosx}

\rm \:  =  \: 2 \: \displaystyle\int\rm  \frac{dx}{\: sin2x}

\rm \:  =  \: 2 \: \displaystyle\int\rm cosec2x \: dx

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm cosecx \: dx = log |cosecx \:  -  \: cotx|  + c}}} \\

So, using this identity, we get

\rm \:  =  \: 2 \: \times \dfrac{1}{2} \: log |cosec2x \:  -  \: cot2x|  + c

\rm \:  =  \: log |cosec2x \:  -  \: cot2x|  + c

Hence,

\boxed{\tt{ \rm \: \displaystyle\int\rm  \frac{dx}{sinx \: cosx}  =  \: log |cosec2x \:  -  \: cot2x|  + c}} \\

ALTERNATIVE METHOD

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{sinx \: cosx}

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{sinx \: cosx} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{2}x +  {cos}^{2}x}{sinx \: cosx} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{2}x}{sinx \: cosx} \: dx \:  +  \: \displaystyle\int\rm  \frac{ {cos}^{2}x}{sinx \: cosx} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}x}{\: cosx} \: dx \:  +  \: \displaystyle\int\rm  \frac{ {cos}x}{sinx \: } \: dx

\rm \:  =  \: \displaystyle\int\rm tanx \: dx \:  +  \: \displaystyle\int\rm cotx \: dx

\rm \:  =  \:  - log |cosx| + log |sinx|  + c \\

\rm \:  =  \:   log\bigg |\dfrac{sinx}{cosx} \bigg|  + c \\

\rm \:  =  \:   log |tanx|   + c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by juwairiyahimran18
1

\large\underline{\sf{Solution-}}  \\  \\ Given \:  \:  integral  \:  \: is \\  \\ \rm :\longmapsto\:\displaystyle\int\rm \frac{dx}{sinx \: cosx} \\  \\ can  \:  \: be \:  \:  rewritten  \:  \: as \\  \\ \rm \:  =  \: 2 \: \displaystyle\int\rm \frac{dx}{2 \: sinx \: cosx}  \\  \\ \rm \:  =  \: 2 \:\displaystyle\int\rm \frac{dx}{\: sin2x}  \\  \\ \rm \:  =  \: 2 \: \displaystyle\int\rm cosec2x \: </p><p>\\  \\ We \:  \:  know \: , \\  \\\begin{gathered}\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm cosecx \: dx = log |cosecx \: - \: cotx| + c}}} \\ \end{gathered}  \\  \\ So \:  \: , using  \:  \: this \:  \:  identity \:  \: ,  \:  \: we \:  \:  get \\  \\ \rm \:  =  \: 2 \: \times \dfrac{1}{2} \: log |cosec2x \: - \: cot2x| + c \\  \\ \rm \:  =  \: log |cosec2x \: - \: cot2x| + c \\  \\ </p><p>Hence \: , \\  \\ \begin{gathered}\boxed{\tt{ \rm \: \displaystyle\int\rm \frac{dx}{sinx \: cosx} =  \: log |cosec2x \: - \: cot2x| + c}} \\ \end{gathered}

ALTERNATIVE METHOD

\rm :\longmapsto\:\displaystyle\int\rm \frac{dx}{sinx \: cosx} \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{1}{sinx \: cosx}  \: dx =  ∫  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{ {sin}^{2}x + {cos}^{2}x}{sinx \: cosx} \: dx = ∫  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{ {sin}^{2}x}{sinx \: cosx} \: dx \: + \: \displaystyle\int\rm \frac{ {cos}^{2}x}{sinx \: cosx} \: dx = ∫  \\  \\ </p><p>\rm \:  =  \: \displaystyle\int\rm \frac{ {sin}x}{\: cosx} \: dx \: + \: \displaystyle\int\rm \frac{ {cos}x}{sinx \: } \: dx = ∫  \\  \\ \rm \:  =  \: \displaystyle\int\rm tanx \: dx \: + \: \displaystyle\int\rm cotx \: dx  \\  \\ \begin{gathered}\rm \:  =  \: - log |cosx| + log |sinx| + c \\ \end{gathered}  \\  \\\begin{gathered}\rm \:  =  \: log\bigg |\dfrac{sinx}{cosx} \bigg| + c \\ \end{gathered} \\  \\  </p><p>\begin{gathered}\rm \:  =  \: log |tanx| + c \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions