EVALUATE---
1 ) R = √P² + Q² + 2PQ cos 0°
2 ) R = √P² + Q² + 2PQ cos 90°
PLEASE EXPLAIN BRIEFLY-------
Answers
Explanation:
1)R=√P² + Q² + 2PQ cos 0°
but cos 0°=1
so R=√P² + Q² + 2PQ
R=√(P+Q)^2
R=P+Q
2)R = √P² + Q² + 2PQ cos 90°
but cos 90°=0
R = √P² + Q² + 2PQ×0
R = √P² + Q²
To find the magnitude of the resultant -
Draw a perpendicular CE in AB, after producing it.
From right angled triangle AEC,
AC² = AE² + CE²
= (AB + BE)² + CE²
= AB² + BE² + 2AB.BE + CE²
• (a+b)² = a² + b² + 2ab.
= AB² + BC² + 2AB. BE
• BE² + CE² = BC²
From right angled triangle BEC,
BE for Base/BC for hypotenuse = Cos.
• BE = BCCos.
Therefore, AC² = AB² + BC² + 2AB.BCCos.
Now, Let AC = R, AB = P, BC = Q.
R² = P² + Q² + 2PQCos.
R = √P² + √Q² + √2PQ. Cos.
Now, special cases.
1) If Cos = 0°
R = √P² + √Q² + √2PQ
Since, Cos0° = 1,
R = √(P + Q)² → (a+b)² formula.
or, R = P + Q.
2) If Cos = 90°
R = √P² + √Q² + √2PQ
Since, Cos90° = 0,
R = √(P - Q)² → (a-b)² formula.
or, R = P - Q.