Evaluate: (1+tan A+sec A)(1+cot A-cosec A)
Answers
Answered by
50
(1+tanA +secA)(1+cot A-cosecA)
=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)
=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA
=[(sinA+cosA)^2-(1)^2]/sinA.cosA.
=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.
=( 1+2.sinA.cosA -1)/sinA.cosA.
= 2.sinA.cosA/sinA.cosA
= 2
=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)
=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA
=[(sinA+cosA)^2-(1)^2]/sinA.cosA.
=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.
=( 1+2.sinA.cosA -1)/sinA.cosA.
= 2.sinA.cosA/sinA.cosA
= 2
Answered by
13
(1+cot A-cosec A).(1+tanA+secA)= 2
L.H.S.
=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)
=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA
=[(sinA+cosA)^2-(1)^2]/sinA.cosA.
=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.
=( 1+2.sinA.cosA -1)/sinA.cosA.
= 2.sinA.cosA/sinA.cosA
= 2 , proved.
Hope this helps you
Similar questions