Math, asked by tansyjena5938, 10 months ago

Evaluate 1+tansquareA by 1+cotsquareA

Answers

Answered by Anonymous
1

The answer of \frac{1+\tan^{2} A}{1+\cot ^{2} A} is \tan ^{2}A

Step-by-step explanation:

The given equation is \frac{1+\tan ^{2}A}{1+\cot ^{2}A}

As we know that, \tan A = \frac{\sin A}{\cos A}

and  \cot A = \frac{\cos A}{\sin A}

=> F(A) = \frac{1+\left (\frac{\sin A}{\cos A}  \right )^{2}}{1+\left (\frac{\cos A}{\sin A}  \right )^{2}}

    F(A) = \frac{\frac{\sin ^{2} A +\cos ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}

    F(A) = \frac{\frac{1}{\cos ^{2}}}{\frac{1}{\sin ^{2}}}

    F(A) = \frac{\sin ^{2} A}{\cos ^{2} A}

    F(A) = \tan^{2} A

The answer of \frac{1+\tan^{2} A}{1+\cot ^{2} A} is \tan ^{2}A

Similar questions