Math, asked by gagadeep121, 3 days ago

evaluate 1/ (x+1) (x+2) (x+3) dx​

Answers

Answered by anindyaadhikari13
2

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \dfrac{1}{(x + 1)(x + 2)(x + 3)}  \: dx

To solve this, we have to decompose it into partial fraction (See attachment)

After decomposing to partial fractions, we get:

 \displaystyle \rm \longrightarrow I = \int \bigg[ \dfrac{1}{2(x + 1)}  -  \dfrac{1}{x + 2} + \dfrac{1}{2(x + 3)}  \bigg]  \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{1}{2(x + 1)}  \: dx -   \int\dfrac{1}{x + 2} \: dx + \int \dfrac{1}{2(x + 3)} \: dx

 \displaystyle \rm \longrightarrow I =  \dfrac{1}{2} \int \dfrac{1}{x + 1}  \: dx -   \int\dfrac{1}{x + 2} \: dx +  \dfrac{1}{2} \int \dfrac{1}{x + 3} \: dx

Let us assume that:

 \rm \longrightarrow u =x + 1

 \rm \longrightarrow v =x + 2

 \rm \longrightarrow w =x + 3

Therefore:

 \rm \longrightarrow du =dx

 \rm \longrightarrow dv =dx

 \rm \longrightarrow dw =dx

So, the integral changes to:

 \displaystyle \rm \longrightarrow I =  \dfrac{1}{2} \int \dfrac{du}{u} -   \int\dfrac{dv}{v} +  \dfrac{1}{2} \int \dfrac{dw}{w}

 \displaystyle \rm \longrightarrow I =  \dfrac{1}{2} \ln( |u| ) -  \ln( |v| )+  \dfrac{1}{2} \ln( |w| ) + C

Substituting back the values of u, v and w, we get:

 \displaystyle \rm \longrightarrow I =  \dfrac{1}{2} \ln( |x + 1| ) -  \ln( |x + 2| )+  \dfrac{1}{2} \ln( |x +3 | ) + C

Therefore:

 \displaystyle \rm \longrightarrow \int \dfrac{dx}{(x + 1)(x + 2)(x + 3)} =  \dfrac{1}{2} \ln( |x + 1| ) -  \ln( |x + 2| )+  \dfrac{1}{2} \ln( |x +3 | ) + C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Attachments:
Similar questions