evaluate 104^3+96^3 urgently
Answers
Answered by
57
Given 104^3 + 96^3.
It is in the form of a^3 + b^3 = (a + b)(a^2 - ab + b^2).
= > (104 + 96)(104^2 - 104 * 96 + 96^2)
= > 200(10816 - 9984 + 9216)
= > 200(10048)
= > 2009600
Hope this helps!
It is in the form of a^3 + b^3 = (a + b)(a^2 - ab + b^2).
= > (104 + 96)(104^2 - 104 * 96 + 96^2)
= > 200(10816 - 9984 + 9216)
= > 200(10048)
= > 2009600
Hope this helps!
siddhartharao77:
:-)
Answered by
22
Hello Mate!
Here, 104^3 + 96^3 is similar to like a^3 + b^3
a^3 + b^3 = ( a + b ) ( a^2 - ab + b^2 )
104^3 + 96^3 = ( 104 + 96 ) ( 104^2 - ( 104 )( 96 ) + 96^2 )
( Now, lets solve 96^2 and 104^2 too by identity , ( 100 - 4 ) ^2 = 100^2 - 2(100)(4) + 4^2
= 10000 - 800 + 16 = 10064 - 800 = 9126
= ( 100 + 4 )^2 = 100^2 + 800 + 4^2
= 10000 + 800 + 16 = 10816 )
104^3 + 96^3 = ( 200 ) ( 10816 - 9984 + 9126 )
= ( 200 ) ( 10048 )
= ( 200 )( 10048 )
= 2009600
Hope it helps☺!✌
Here, 104^3 + 96^3 is similar to like a^3 + b^3
a^3 + b^3 = ( a + b ) ( a^2 - ab + b^2 )
104^3 + 96^3 = ( 104 + 96 ) ( 104^2 - ( 104 )( 96 ) + 96^2 )
( Now, lets solve 96^2 and 104^2 too by identity , ( 100 - 4 ) ^2 = 100^2 - 2(100)(4) + 4^2
= 10000 - 800 + 16 = 10064 - 800 = 9126
= ( 100 + 4 )^2 = 100^2 + 800 + 4^2
= 10000 + 800 + 16 = 10816 )
104^3 + 96^3 = ( 200 ) ( 10816 - 9984 + 9126 )
= ( 200 ) ( 10048 )
= ( 200 )( 10048 )
= 2009600
Hope it helps☺!✌
Similar questions