Math, asked by rishikeshsiri7, 2 months ago

Evaluate 108 × 97 using identity.

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

Evaluate 108 × 97 using identity.

EVALUATION

We are aware of the identity that

\displaystyle\sf{ ab =  { \bigg(  \frac{a + b}{2} \bigg)}^{2} -{ \bigg(  \frac{a  -  b}{2} \bigg)}^{2}  }

EVALUATION

We have to find the value of 108 × 97

Let a = 108 & b = 97

\displaystyle\sf{ 108 \times 97 }

\displaystyle\sf{ =  { \bigg(  \frac{108 + 97}{2} \bigg)}^{2} -{ \bigg(  \frac{108  -  97}{2} \bigg)}^{2}  }

\displaystyle\sf{ =  { \bigg(  \frac{205}{2} \bigg)}^{2} -{ \bigg(  \frac{11}{2} \bigg)}^{2}  }

\displaystyle\sf{ =   \frac{42025 - 121}{4}  }

\displaystyle\sf{ =   \frac{41904}{4}  }

\displaystyle\sf{ =   10476}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Answered by barani79530
0

Step-by-step explanation:

42025−121</p><p>	</p><p> </p><p></p><p>\displaystyle\sf{ = \frac{41904}{4} }= </p><p>4</p><p>41904</p><p>	</p><p> </p><p></p><p>\displaystyle\sf{ = 10476}=10476

Similar questions