Math, asked by mprity0, 4 months ago

evaluate
[(12/25)² × (15/2) ³ ] ÷ (9/2) ² solution

Answers

Answered by MagicalBeast
2

Solution :

\sf \bigg[ \bigg( \dfrac{12}{25} \bigg)^2 \times  \bigg(  \dfrac{15}{2} \bigg)^3\bigg]  \div  \bigg( \dfrac{9}{2} \bigg)^2

\sf  \implies\: \bigg[ \bigg( \dfrac{2 \times 2 \times 3}{5 \times 5} \bigg)^2 \times  \bigg(  \dfrac{3 \times 5}{2} \bigg)^3\bigg]  \div  \bigg( \dfrac{3 \times 3}{2} \bigg)^2

\sf  \implies\:\bigg[ \bigg( \dfrac{ {2}^{2}  \times 3}{ {5}^{2} } \bigg)^2 \times  \bigg(  \dfrac{3 \times 5}{2} \bigg)^3\bigg]  \div  \bigg( \dfrac{ {3}^{2} }{2} \bigg)^2

Using identity

\sf \bullet   \: \bigg( \dfrac{a}{b} \bigg)^2  =  \dfrac{ {a}^{2} }{ {b}^{2} }

\sf \bullet   \:  { ({a}^{b}) }^{c} \:   =  \:  {a}^{(b \times c)}

\sf \bullet   \:  {a \times b}^{c} \:  =  \:   {a}^{c}   \:  \times  \: {b}^{c}

We get,

 \sf  \implies \: \bigg[  \: \bigg( \dfrac{ ({2}^{2}) {}^{2}   \times  {3}^{2} }{ ({5}^{2}  ){}^{2} } \bigg) \times  \bigg(  \dfrac{ {3}^{3}  \times {5}^{3} }{ {2}^{3} }   \bigg)\bigg]  \div  \bigg( \dfrac{( {3}^{2}) {}^{2}  }{ {2}^{2} } \bigg)

 \sf  \implies \: \bigg[  \:  \dfrac{( {2}^{2 \times 2})   \times  {3}^{2} }{ ({5}^{2 \times 2}  ) } \times    \dfrac{ {3}^{3}  \times {5}^{3} }{ {2}^{3} }   \bigg]  \div  \bigg( \dfrac{( {3}^{2 \times 2})   }{ {2}^{2} } \bigg)

 \sf  \implies \: \bigg[  \:  \dfrac{ {2}^{4}   \times  {3}^{2} }{ ({5}^{4}  ) } \times    \dfrac{ {3}^{3}  \times {5}^{3} }{ {2}^{3} }   \bigg]  \div  \bigg( \dfrac{( {3}^{4})   }{ {2}^{2} } \bigg)

 \sf  \implies \: \bigg[  \:  \dfrac{ {2}^{4}   \times  {3}^{2}  \times  \:  {3}^{3}  \times {5}^{3} }{ {5}^{4}  \times  {2}^{3}   } \bigg]  \:  \div  \bigg( \dfrac{( {3}^{4})   }{ {2}^{2} } \bigg)

Using identity,

 \sf \bullet \:  {a}^{m}  \times  {a}^{n }  \:  =  \:  {a}^{(m + n)}

 \sf \bullet \:  \dfrac{ {a}^{m} }{ {a}^{n} }  \: =   \:  \:  {a}^{(m - n)}

We get,

\sf  \implies \: \bigg[  \:  \dfrac{ {2}^{(4 - 3)}   \times  {3}^{(2 + 3)}    }{ {5}^{(4 - 3)}     } \bigg]  \:  \div  \bigg( \dfrac{( {3}^{4})   }{ {2}^{2} } \bigg)

\sf  \implies \: \bigg[  \:  \dfrac{ {2}^{(1)}   \times  {3}^{(5)}    }{ {5}^{(1)}     } \bigg]  \:  \div  \bigg( \dfrac{( {3}^{4})   }{ {2}^{2} } \bigg)

\sf  \implies \: \:  \dfrac{ {2}^{(1)}   \times  {3}^{(5)}    }{ {5}^{(1)}     }   \:  \div  \dfrac{( {3}^{4})   }{ {2}^{2} }

\sf  \implies \:   \:  \dfrac{ {2}^{(1)}   \times  {3}^{(5)}    }{ {5}^{(1)}     }   \:  \times  \dfrac{ {2}^{2}  }{ {3}^{4} }

\sf  \implies \:   \:  \dfrac{ {2}^{(1 + 2)}   \times  {3}^{(5 - 4)}    }{ {5}^{(1)}     }   \:

\sf  \implies \:   \:  \dfrac{ {2}^{(3)}   \times  {3}^{(1)}    }{ {5}   }   \:

\sf  \implies \:   \:  \dfrac{ {8}   \times  {3}    }{ {5}   }   \:

\sf  \implies \:   \:  \dfrac{   24   }{ {5}   }   \:

Answer : 24/5

Similar questions