Math, asked by jass40, 1 year ago

evaluate 15/(√10+√20+√40-√5-√80)? plc now

Answers

Answered by aquialaska
89

Answer:

After Evaluating we get √10 + √5

Step-by-step explanation:

Given Expression;

\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}

We need to evaluate the given expression.

We first simplify the square roots.

Consider,

\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}

=\frac{15}{\sqrt{10}+\sqrt{4\times5}+\sqrt{4\times10}-\sqrt{5}-\sqrt{16\times5}}

=\frac{15}{\sqrt{10}+2\sqrt{5}+2\sqrt{10}-\sqrt{5}-4\sqrt{5}}

=\frac{15}{(1+2)\sqrt{10}+(2-1-4)\sqrt{5}}

=\frac{15}{3\sqrt{10}-3\sqrt{5}}

=\frac{15}{3(\sqrt{10}-\sqrt{5})}

=\frac{5}{\sqrt{10}-\sqrt{5}}

=\frac{5}{\sqrt{10}-\sqrt{5}}\times\frac{\sqrt{10}+\sqrt{5}}{\sqrt{10}+\sqrt{5}}

=\frac{5(\sqrt{10}+\sqrt{5})}{(\sqrt{10}-\sqrt{5})(\sqrt{10}+\sqrt{5})}

=\frac{5(\sqrt{10}+\sqrt{5})}{(\sqrt{10})^2-(\sqrt{5})^2}

=\frac{5(\sqrt{10}+\sqrt{5})}{10-5}

=\frac{5(\sqrt{10}+\sqrt{5})}{5}

=\sqrt{10}+\sqrt{5}

Therefore, After Evaluating we get √10 + √5

Similar questions