Math, asked by diya182, 1 year ago

Evaluate 15 by root 10 + root 20 + root 40 -root 5 - root 80 , it being given that root 5 is = 2 .236 and root 10 is= 3 . 162

Answers

Answered by Anonymous
308

Hey sis!
your \: anwer \: is \: in \: the \: attachment \: .
HOPE IT HELPS YOU!!






Attachments:

diya182: thnk uu
KANISHKA11156: what a writing
KANISHKA11156: zabardast
KANISHKA11156: it's top class
KANISHKA11156: hmm
Answered by mysticd
116

Answer:

\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}=5.398

Step-by-step explanation:

 Given \\\sqrt{5}=2.236,\:\sqrt{10}=3.162

i)\sqrt{10}--(1)

ii)\sqrt{20}=\sqrt{2^{2}\times 5}=2\sqrt{5}--(2)

iii)\sqrt{5}--(3)

iv)\sqrt{40}=\sqrt{2^{2}\times 10}=2\sqrt{10}--(4)

v)\sqrt{80}=\sqrt{4^{2}\times 5}=4\times 5--(5)

Now,\\\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}\\=\frac{15}{\sqrt{10}+2\sqrt{5}+2\sqrt{10}-\sqrt{5}-4\sqrt{5}}\\=\frac{15}{3\sqrt{10}-3\sqrt{5}}\\=\frac{15}{3(\sqrt{10}-\sqrt{5})}

/* Rationalising the denominator, we get

=\frac{15(\sqrt{10}+\sqrt{5}}{3(\sqrt{10}-\sqrt{5})(\sqrt{10}+\sqrt{5})}\\=\frac{15(\sqrt{10}+\sqrt{5}}{3[(\sqrt{10})^{2}-(\sqrt{5})^{2}]}\\=\frac{15(\sqrt{10}+\sqrt{5}}{3(10-5)}\\=\frac{15(\sqrt{10}+\sqrt{5})}{3\times 5 }\\=\frac{15(\sqrt{10}+\sqrt{5})}{15}\\=\sqrt{10}+\sqrt{5}\\=3.162+2.236\\=5.398

Therefore,

\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}=5.398

•••♪

Similar questions