Math, asked by Anonymous, 11 months ago

Evaluate 15÷(/sqrt{10}+/sqrt{20}+/sqrt{40}-/sqrt{5}-/sqrt{80} ) given that /sqrt{5}=2.236 and /sqrt{10} = 3.162

Follow me on instagram so I will ask a 100 point question..an easy one​

Answers

Answered by CharmingPrince
38

\huge{ \underline{ \mathfrak{ \green{ \: Answer}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\boxed{\red{\bold{Convert \: all \: to \: factors \: of\: \sqrt{5} \:or\:\sqrt{10}:}}}

\implies{\displaystyle{\frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}}}

\implies{\displaystyle{\frac{15}{\sqrt{10} + \sqrt{5 × 4} + \sqrt{4 × 10} - \sqrt{5} - \sqrt{16 × 5}}}}

\implies{\displaystyle{\frac{15}{\sqrt{10} + 2\sqrt{5} + 2\sqrt{10} - \sqrt{5} - 4\sqrt{5}}}}

\boxed{\red{\bold{Now\:put\:values\:of\:\sqrt{10} \: and \: \sqrt{5}:}}}

\implies\displaystyle{\frac{15}{3.162 + 2 × 2.236 + 2 × 3.162 - 2.236 - 4 × 2.236}}

\implies\displaystyle{\frac{15}{3.162 + 4.472 + 6.324 - 2.236 - 8.944}}

\implies\displaystyle{\frac{15}{2.778}}

\implies\displaystyle{\frac{15 × 1000}{2778}}

\implies\displaystyle{\frac{5 × 1000}{926}}

\blue{\bold{\underline{Hence \: the\: answer\: is \: 5.3995680346(approx)}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions