Math, asked by Kriti0184, 9 months ago

.............................Evaluate...........................​

Attachments:

Answers

Answered by shadowsabers03
3

We have to find,

\quad

\displaystyle\longrightarrow\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx=\,?}

\quad

Multiplying and dividing denominator by a,

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\int\dfrac {1}{\left (\dfrac {a|x|\sqrt{x^2-a^2}}{a}\right)}dx}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\int\dfrac {1}{a|x|\sqrt{\dfrac {x^2-a^2}{a^2}}}dx}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\int\dfrac {1}{a|x|\sqrt{\left (\dfrac {x}{a}\right)^2-1}}dx\quad\quad\dots (1)}\end {aligned}

\quad

Let,

\quad

\displaystyle\longrightarrow\sf{u=\dfrac {x}{a}}

\quad

Since a is constant,

\quad

\displaystyle\longrightarrow\sf{\dfrac {du}{dx}=\dfrac {1}{a}}

\quad

\displaystyle\longrightarrow\sf{dx=a\ du}

\quad

Then (1) becomes,

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\int\dfrac {a}{a|au|\sqrt{u^2-1}}du}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\int\dfrac {1}{a|u|\sqrt{u^2-1}}du}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\dfrac {1}{a}\int\dfrac {1}{|u|\sqrt{u^2-1}}du}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\dfrac {1}{a}\sec^{-1}(u)+C}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\dfrac {1}{a}\sec^{-1}\left (\dfrac{x}{a}\right)+C}\end {aligned}

\quad

Since \displaystyle\sf{\sec^{-1}(t)=\dfrac {\pi}{2}-\csc^{-1}(t),}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\dfrac {1}{a}\left (\dfrac {\pi}{2}-\csc^{-1}\left (\dfrac{x}{a}\right)\right)+C}\end {aligned}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{\dfrac {\pi}{2a}-\dfrac {1}{a}\csc^{-1}\left (\dfrac{x}{a}\right)+C}\end {aligned}

\quad

Taking \displaystyle\sf{\dfrac {\pi}{2a}+C=K,}

\quad

\begin {aligned}\displaystyle\longrightarrow\ \ &\sf{\int\dfrac {1}{|x|\sqrt{x^2-a^2}}dx}\\\\=\ \ &\sf{-\dfrac {1}{a}\csc^{-1}\left (\dfrac{x}{a}\right)+K}\end {aligned}

Similar questions