Math, asked by kiara9514, 10 months ago

Evaluate...............

Attachments:

Answers

Answered by Anonymous
1
confused_____!!!!!!!!!
Attachments:
Answered by saounksh
1

ᴀɴsᴡᴇʀ

\boxed{\int \frac{{x}^{-\frac{1}{2}}}{1+{x}^{\frac{1}{3}}}dx= 6[{x}^{\frac{1}{6}}-{tan}^{-1}( {x}^{\frac{1}{6}})] +C}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

I = \int \frac{{x}^{-\frac{1}{2}}}{1+{x}^{\frac{1}{3}}}dx

I = \int \frac{dx}{{x}^{\frac{1}{2}}(1+{x}^{\frac{1}{3}}) }

Substitute  {x}^{\frac{1}{3}} = tan²(θ)

⇒ x= tan⁶(θ)

⇒ dx= 6tan⁵(θ)sec²(θ)dθ

I = \int \frac{6tan⁵(θ)sec²(θ)dθ}{tan³(θ)(1+tan²(θ))}

I = \int \frac{6tan²(θ)sec²(θ)dθ}{sec²(θ)}

I = \int 6tan²(θ)dθ

I = 6\int (sec²(θ)-1)dθ

I = 6[tan(θ)-θ] +C

I = 6[{x}^{\frac{1}{6}}-{tan}^{-1}( {x}^{\frac{1}{6}})] +C

Similar questions