EVALUATE.............
Attachments:
Answers
Answered by
3
Answer:
∫11+x4 dx
=∫1x21+x4x2 dx
=∫1x2x2+1x2 dx
=12∫2x2x2+1x2 dx
=12∫(1+1x2)−(1−1x2)x2+1x2 dx
=12∫(1+1x2)dxx2+1x2−12∫(1−1x2)dxx2+1x2
=12∫(1+1x2)dxx2+1x2−2+2−12∫(1−1x2)dxx2+1x2+2−2
=12∫d(x−1x)(x−1x)2+2−12∫d(x+1x)(x+1x)2−2
=12∫d(x−1x)(x−1x)2+(2√)2−12∫d(x+1x)(x+1x)2−(2√)2
★ Now, using standard formula: ∫dxx2+a2=1atan−1(xa) & ∫dxx2−a2=12aln∣∣x−ax+a∣∣
=12⋅12√tan−1(x−1x2√)−12⋅122√ln∣∣∣x+1x−2√x+1x+2√∣∣∣+C
=122√tan−1(x2−1x2√)−142√ln∣∣x2−x2√+1x2+x2√+1∣∣+C
Answered by
24
Answer:
Answer is
Similar questions
History,
4 months ago
Social Sciences,
4 months ago
English,
8 months ago
English,
8 months ago
Social Sciences,
11 months ago
Math,
11 months ago