evaluate (2/3)⁵ please give the ans
Answers
Answer:
using law of exponents
Step-by-step explanation:
using laws of exponent ,
(\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332
(\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332Step-by-step explanation:
(\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332Step-by-step explanation:We know the laws of exponent (\dfrac{a}{b} ) ^{m} =\dfrac{a^{m} }{b^{m} }(ba)m=bmam
(\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332Step-by-step explanation:We know the laws of exponent (\dfrac{a}{b} ) ^{m} =\dfrac{a^{m} }{b^{m} }(ba)m=bmamWhere a, b are base and m is the exponent
(\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332Step-by-step explanation:We know the laws of exponent (\dfrac{a}{b} ) ^{m} =\dfrac{a^{m} }{b^{m} }(ba)m=bmamWhere a, b are base and m is the exponentso (\dfrac{2}{3}) ^{5} =\dfrac{2^{5} }{3^{5} } =\dfrac{32}{243}(32)5=3525=24332
Answer:
answer is 32/243
Step-by-step explanation: