Math, asked by rtworkout1075, 9 months ago

Evaluate
-2
/√5x-4- √5x-2
dx​

Attachments:

Answers

Answered by CaptainAmerica3
1

  Answer:

\frac{2}{15}  [ (5x-4)^{3/2} + (5x-2)^{3/2}  ] + C

Step-by-step explanation:

\int\limits {\frac{-2}{\sqrt{5x-4}-\sqrt{5x-2}  } \, dx

Multiplying numerator and denominator by \sqrt{5x-4} + \sqrt{5x-2}

= -2\int\limits {\frac{\sqrt{5x-4} +\sqrt{5x-2}  }{5x-4-(5x-2)} } \, dx

=-2\int\limits {\frac{\sqrt{5x-4} + \sqrt{5x-2}  }{-2} } \, dx

=\int\limits {\sqrt{5x-4} +\sqrt{5x-2}  } \, dx

=\int\limits {(\sqrt{5x-4} )} \, dx  +\int\limits {\sqrt{5x-2} } \, dx

=\ {\frac{(5x-4)^{3/2} }{3/2*5}  }   +  \frac{(5x-2)^{3/2} }{3/2*5} +C

= 2/15[(5x-4)^{3/2} +(5x-2^{3/2}] + C

Similar questions