Math, asked by rajeshwarinishanth56, 11 months ago

evaluate 2 sin π/12​

Answers

Answered by rashich1219
1

To Find:

Evaluate 2 sin π/12.

Solution:

let, P=\pi/6

then,

(sinP/2+cosP/2)^2=sin^2P/2+cos^2P/2+2sinP/2cosP/2\\\\(sinP/2+cosP/2)^2=1+sinP\\\\sinP/2+cosP/2=\sqrt{1+sinP} ...(1)

similarly,

sinP/2-cosP/2=\pm\sqrt{1-sinP}      

(as, for smaller value of P,  {P= π/12} , cos P > sin P ), therefore,

sinP/2-cosP/2=-\sqrt{1-sinP}        ....(2)  

on adding, equation (1) and (2), we get

2 \ sinP/2=\sqrt{1+sinP}-\sqrt{1-sinP}

on substituting, value of P , we get

2sin\pi/12=\sqrt{1+sin\pi/6} -\sqrt{1-sin\pi/6}\\\\2sin\pi/12=\sqrt{3/2} -\sqrt{1/2}\\\\2sin\pi/12=\dfrac{\sqrt{3}-1}{\sqrt{2} }

Required answer.

Similar questions