Math, asked by reshubts, 11 months ago

evaluate (((256)^-1/2)^-1/4)^3​

Answers

Answered by khushivinod53
7

if it helps mark me as a brainelist

Attachments:
Answered by payalchatterje
3

Answer:

The value of the given expression is 8.

Step-by-step explanation:

Given

 { { {(256)}^{( -  \frac{1}{2}) } }^{( -  \frac{1}{4}) } }^{3}

First we are breaking 256,

256 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2

Or,256 =  {2}^{8}

Here

 { { {( {2}^{8} )}^{( -  \frac{1}{2}) } }^{( -  \frac{1}{4}) } }^{3}  =  { { {(2)}^{( 8 \times (-  \frac{1}{2})) } }^{( -  \frac{1}{4}) } }^{3}  =   { { {(2)}^{( - 4) } }^{( -  \frac{1}{4}) } }^{3}  =  { { {(2)}^{( - 4 \times ( -  \frac{1}{4} ) } }^{} }^{3}  =  { {2}^{1} }^{3}  =  {2}^{1 \times 3}  =  {2}^{3}  = 2 \times 2 \times 2  = 8

The value of the given expression is 8.

Here applied formula is

    {( {a}^{p} )}^{q}  =  {a}^{p \times q}

Some others formula of power and indices are

  {x}^{p}   \times   {y}^{p} =  {(xy)}^{p}

 \frac{ {x}^{p} }{ {y}^{p} }  =  {( \frac{x}{y} )}^{p}

 {x}^{p}  \times  {x}^{q}  =  {x}^{p + q}

 \frac{ {x}^{p} }{ {x}^{q} }  =  {x}^{p - q}

 {x}^{0}  = 1

 {x}^{1}  = x

Similar questions