Math, asked by Akanksha18012008, 1 month ago

evaluate (27/125)^⅔ × (243)^-⅖​

Answers

Answered by sehgalp381
34

Answer:

( \frac{27}{125} ) {}^{ \frac{3}{2} }  \times (243) {}^{ \frac{ 5}{ - 2} }  \\ ( \frac{3}{5} )  {}^{2}  \times (3) {}^{ - 2}  \\  \frac{9}{25}  \times 3 =  \frac{27}{25}

ok

Answered by payalchatterje
0

Answer:

Required value of the given term is

\frac{ {3}^{ \frac{ - 4}{3} } }{25}

Step-by-step explanation:

Given,

 { (\frac{27}{125} )}^{ \frac{2}{3} }  \times  {(243)}^{ -  \frac{2}{3} }

This is a problem of power of indices.

 { (\frac{3 \times 3 \times 3}{5 \times 5 \times 5} )}^{ \frac{2}{3} }  \times  {(3 \times 3 \times 3 \times 3 \times 3)}^{ -  \frac{2}{3} }

 { (\frac{ {3}^{3} }{ {5}^{5} } )}^{ \frac{2}{3} }  \times  {( {3}^{5} )}^{ -  \frac{2}{3} }

 \frac{ { {(3)}^{(3)} }^{ \frac{2}{3} } }{ { {(5)}^{(3)} }^{  \frac{2}{3}  } }  \times  { {3}^{(5)} }^{ -  \frac{2}{3} }

 \frac{ {3}^{3 \times  \frac{2}{3} } }{ {5}^{3 \times  \frac{2}{3} } }  \times  {3}^{5 \times (  - \frac{2}{3}) }  \\  \frac{ {3}^{2} }{ {5}^{2} }  \times  {3}^{ -  \frac{10}{3} }

 \frac{ {3}^{2}  \times  {3}^{ -  \frac{10}{3} } }{25}

 \frac{ {3}^{2 -  \frac{10}{3} } }{25}  \\  \frac{ {3}^{ \frac{ - 4}{3} } }{25}

Here applied formulas are

 {x}^{ - y}  =  \frac{1}{ {x}^{y} }

 {x}^{y}  \times  {x}^{z}  =  {x}^{y + z}

 {x}^{ {y}^{a} }  =  {x}^{y \times a}

Similar questions