Math, asked by michaelnavant, 2 months ago

evaluate:27⅓+9³/² -3(5)-(1/81)-½​

Answers

Answered by 12thpáìn
5

Evaluate :

{  \:  \:  \:  \:  \implies\sf {27}^{ \frac{1}{3} } + {9}^{ \frac{3}{2} }  -3(5)-(1/81)^{ \frac{ - 1}{2} } }\\

Step by step Explanation:

\\{  \:  \:  \:  \:  \implies\sf {27}^{ \frac{1}{3} } + {9}^{ \frac{3}{2} }  -3(5)-(1/81)^{ \frac{ - 1}{2} } }

{  \:  \:  \:  \:  \implies\sf  \sqrt[3]{27}  + { {3} }^{ 2 \times \frac{3}{2} }  -15- \sqrt{81}  }

{  \:  \:  \:  \:  \implies\sf  \sqrt[3]{ {3}^{3} }  + { {3} }^{ 3 }  -15- \sqrt{ {9}^{2} }  }

{  \:  \:  \:  \:  \implies\sf  3  + 27 -15- 9  }

{  \:  \:  \:  \:  \implies\sf  30 -24  }

{  \:  \:  \:  \:  \implies\sf  6  }

\\{  \:  \boxed{ \:  \:  \sf {27}^{ \frac{1}{3} } + {9}^{ \frac{3}{2} }  -3(5)-(1/81)^{ \frac{ - 1}{2} } =  \bf6 }}\\\\

{\footnotesize\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  \pink{Laws} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf \green{Example } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\\sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Answered by madukasundi157
4

Answer:

Refer to the attachment photo.

Don't forget to thanks

Mark as brainlist.

Attachments:
Similar questions