evaluate : (2a + 3b + 4c) power 2 + (2a - 3b + 4c) power 2 + (2a + 3b - 4c) power 2
Answers
12a² + 27b² + 48c² + 12ab - 24bc + 16ac
Here, we are asked to find the value of the given expression :
- (2a + 3b + 4c)² + (2a - 3b + 4c)² + (2a + 3b - 4c)²
Required Identity :
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Required Steps :
• Step 1 : We'll solve each of the expression separately by using the above identity.
• Step 2 : After getting the value of each expression, we'll find their sum in order to evaluate the given expression.
⇒ (2a + 3b + 4c)² + (2a - 3b + 4c)² + (2a + 3b - 4c)²
- Expression 1 : (2a + 3b + 4c)²
- Expression 2 : (2a - 3b + 4c)²
- Expression 3 : (2a + 3b - 4c)²
Finding the value of expression 1 :
By using identity,
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
→ (2a)² + (3b)² + (4c)² + 2{ (2a × 3b) + (3b × 4c) + (4c × 2a) }
→ 4a² + 9b² + 16c² + 2{ (6ab) + (12bc) + (8ca) }
→ 4a² + 9b² + 16c² + 2(6ab) + 2(12bc) + 2(8ca)
→ 4a² + 9b² + 16c² + 12ab + 24bc + 16ac
Finding the value of expression 2 :
We can also write it as,
→ {2a +(-3b) + 4c}²
By using identity,
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
→ (2a)² + (-3b)² + (4c)² + 2[ {2a × (-3b)} + {(-3b) × 4c} + (4c × 2a) ]
→ 4a² + 9b² + 16c² + 2[ {-6ab} + {-12bc} + (8ca) ]
→ 4a² + 9b² + 16c² + 2{-6ab} + 2{-12bc} + 2(8ca)
→ 4a² + 9b² + 16c² - 12ab - 24bc + 16ca
Finding the value of expression 3 :
We can also write it as,
→ {2a + 3b + (-4c)}²
By using identity,
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
→ (2a)² + (3b)² + (-4c)² + 2[ (2a × 3b) + {3b × (-4c)} + {(-4c) × 2a} ]
→ 4a² + 9b² + 16c² + 2[ (6ab) + {-12bc} + {-8ca} ]
→ 4a² + 9b² + 16c² + 2(6ab) + 2{-12bc} + 2(-8ca)
→ 4a² + 9b² + 16c² + 12ab - 24bc - 16ca
Combining all the three expressions :
→ (4a² + 9b² + 16c² + 12ab + 24bc + 16ac) + (4a² + 9b² + 16c² - 12ab - 24bc + 16ca) + (4a² + 9b² + 16c² + 12ab - 24bc - 16ca)
→ 4a² + 9b² + 16c² + 12ab + 24bc + 16ac + 4a² + 9b² + 16c² - 12ab - 24bc + 16ca + 4a² + 9b² + 16c² + 12ab - 24bc - 16ca
→ 4a² + 4a² + 4a² + 9b² + 9b² + 9b² + 16c² + 16c² + 16c² + 12ab + 12ab - 12ab + 24bc - 24bc - 24bc + 16ac - 16ac + 16ac
→ 12a² + 27b² + 48c² + 24ab - 12ab - 24bc + 16ac
→ 12a² + 27b² + 48c² + 12ab - 24bc + 16ac
Therefore, 12a² + 27b² + 48c² + 12ab - 24bc + 16ac is the required answer.
hope it help more in future so